Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 210473 by Ismoiljon_008 last updated on 10/Aug/24

Answered by mrdiane last updated on 11/Aug/24

on a  { ((7^2 =x^2 +5^2 −10xcos(θ))),((7^2 =x^2 +(x+5)^2 −2x(x+5)cos(Π−θ))) :}  ⇔ { ((7^2 =x^2 +5^2 −10xcos(θ) (1))),((7^2 =x^2 +(x+5)^2 +2x(x+5)cos(θ) (2))) :}  (1)=(2) on a 2(x+5)cos(θ)+x+10=−10cos(θ)  ⇔cos(θ)=((−x−10)/(2x+20)) =((−1)/2) pour car x≥0  ⇔x^2 −24=  dans (1) on a x^2 +5x−24=0 ⇔x=3 ou x=−8 comme x≥0  donc x=3  x^2 +5x−24=0

ona{72=x2+5210xcos(θ)72=x2+(x+5)22x(x+5)cos(Πθ){72=x2+5210xcos(θ)(1)72=x2+(x+5)2+2x(x+5)cos(θ)(2)(1)=(2)ona2(x+5)cos(θ)+x+10=10cos(θ)cos(θ)=x102x+20=12pourcarx0x224=dans(1)onax2+5x24=0x=3oux=8commex0doncx=3x2+5x24=0

Answered by efronzo1 last updated on 11/Aug/24

  cos θ = ((x^2 +(x+5)^2 −49)/(2x(x+5)))   cos (180°−θ)= ((25+x^2 −49)/(2.5.x))   ⇒−cos θ = ((x^2 −24)/(10x))    ⇒− ((2x^2 +10x−24)/(2x(x+5))) = ((x^2 −24)/(10x))   ⇒−(10x^2 +50x−120) = (x^2 −24)(x+5)   ⇒−10x^2 −50x+120=x^3 +5x^2 −24x−120   ⇒x^3 +15x^2 +26x−240=0   ⇒(x−3)(x+8)(x+10)=0          ∴ x = 3

cosθ=x2+(x+5)2492x(x+5)cos(180°θ)=25+x2492.5.xcosθ=x22410x2x2+10x242x(x+5)=x22410x(10x2+50x120)=(x224)(x+5)10x250x+120=x3+5x224x120x3+15x2+26x240=0(x3)(x+8)(x+10)=0x=3

Answered by mr W last updated on 10/Aug/24

Commented by mr W last updated on 10/Aug/24

Method I  x(y^2 +7^2 )=2x(5^2 +x^2 )  ⇒y^2 =2x^2 +1  5×7^2 +x×x^2 =(5+x)(y^2 +5x)  ⇒245+x^3 =(5+x)(2x^2 +1+5x)  ⇒x^3 +15x^2 +26x−240=0  ⇒(x−3)(x^2 +18x+80)=0  ⇒x=3

MethodIx(y2+72)=2x(52+x2)y2=2x2+15×72+x×x2=(5+x)(y2+5x)245+x3=(5+x)(2x2+1+5x)x3+15x2+26x240=0(x3)(x2+18x+80)=0x=3

Answered by mr W last updated on 10/Aug/24

Commented by mr W last updated on 10/Aug/24

Method II  AE=x+2×5  CE=((AE)/2)=(x/2)+5  CF=(x/2)+5−5=(x/2)  DC^2 =7^2 −((x/2)+5)^2 =x^2 −((x/2))^2   x^2 +5x−24=0  (x−3)(x+8)=0  ⇒x=3

MethodIIAE=x+2×5CE=AE2=x2+5CF=x2+55=x2DC2=72(x2+5)2=x2(x2)2x2+5x24=0(x3)(x+8)=0x=3

Commented by Ismoiljon_008 last updated on 10/Aug/24

Thank you very much

Thankyouverymuch

Answered by mr W last updated on 11/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com