Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 210554 by Batmath last updated on 12/Aug/24

Answered by MrGaster last updated on 02/Nov/24

∫_0 ^∞ [(1/2)−S(px)]x^(2q−1) dx=∫_0 ^∞ [(1/2)−(1/π)∫_0 ^∞ ((sin(tpx))/t)dt]x^(2q−1) dx  =(1/π)∫_0 ^∞ ∫_0 ^∞ (1/2)[(1/2)−((sin(tpx))/t)]x^(2q−1) dtdx  =(1/π)∫_0 ^∞ ∫_0 ^∞ (1/2)x^(2q−1) dxdt−(1/π)∫_0 ^∞ ∫_0 ^∞ ((sin(tpx))/t)x^(2q−1) dtdx  =(1/π)∫_0 ^∞ (1/2) (x^(2q) /(2q))∣_0 ^∞ dt−(1/π)∫_0 ^∞ (1/t)[((−cos(tpx))/(2qp))x^(2q) ]∣_0 ^∞ dt  =(1/π)∫_0 ^∞ (1/2)∙(1/(2a))lim_(x→∞) x^(2a) dt−(1/x)∫_0 ^∞ (1/t)∙(1/(2qp))[lim_(x→∞) cos(tqx)x^(2q) −lim_(x→0) cos(tqx)x^(2q) ]dt  =(1/π)∙(1/(2q))∙(1/2)∙∞−(1/π)∙(1/(2qp))[0−1]∫_0 ^∞ (1/t^(2q+1) )dt  =(1/π)∙(1/(2qp))∙(π/2)∙(1/(Γ(2q+1)))  =(1/(4qp))∙((Γ(2q+1))/(Γ(2q+1)))  =(1/(4qp))∙((Γ(2q+1))/(2qΓ(2q)))  =(1/(4qp))∙((Γ(2q+1))/(2(√π)Γ(2q+(1/2))))  =(√2)((Γ(q+(1/2))sin((2q+1)/4)π)/(4(√π)qp^(2q) ))

0[12S(px)]x2q1dx=0[121π0sin(tpx)tdt]x2q1dx=1π0012[12sin(tpx)t]x2q1dtdx=1π0012x2q1dxdt1π00sin(tpx)tx2q1dtdx=1π012x2q2q0dt1π01t[cos(tpx)2qpx2q]0dt=1π01212alimxx2adt1x01t12qp[limcosx(tqx)x2qlimcosx0(tqx)x2q]dt=1π12q121π12qp[01]01t2q+1dt=1π12qpπ21Γ(2q+1)=14qpΓ(2q+1)Γ(2q+1)=14qpΓ(2q+1)2qΓ(2q)=14qpΓ(2q+1)2πΓ(2q+12)=2Γ(q+12)sin2q+14π4πqp2q

Terms of Service

Privacy Policy

Contact: info@tinkutara.com