Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 210677 by Safojon last updated on 16/Aug/24

Answered by BHOOPENDRA last updated on 16/Aug/24

θ=((kπ)/(7 )),7θ=kπ (where k=1,2,3,4....n)  7θ=π (k=1)  4θ+3θ=π  tg4θ=−tg(3θ) let tg=t  ⇒ ((4t−4t^3 )/(1−6t^2 +t^4 ))=((−3t−t^3 )/(1−3t^2 ))  =t^6 −21t^4 +35t^2 −7=0   eq(1)  = This is a cubic equation in t^2  that  is in tg^2 θ.   the root of the eq is tg^2 (π/7),tg^2 ((2π)/7)  tg^2 ((3π)/7)  So sum of the root =−(((−21))/1)=21  tg^2 (π/7)+tg^2 ((2π)/7)+tg^2 ((3π)/7)=21

θ=kπ7,7θ=kπ(wherek=1,2,3,4....n)7θ=π(k=1)4θ+3θ=πtg4θ=tg(3θ)lettg=t4t4t316t2+t4=3tt313t2=t621t4+35t27=0eq(1)=Thisisacubicequationint2thatisintg2θ.therootoftheeqistg2π7,tg22π7tg23π7Sosumoftheroot=(21)1=21tg2π7+tg22π7+tg23π7=21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com