Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 210702 by depressiveshrek last updated on 17/Aug/24

How many real solutions does the  equation x=sin3x have?

Howmanyrealsolutionsdoestheequationx=sin3xhave?

Answered by Frix last updated on 17/Aug/24

x=sin 3x  t=3x  (t/3)=sin t  t_1 =0  −1≤(t/3)≤1  −3≤t≤3  sin t ≥0 ⇒ 0≤t≤π; π>3  ⇒ 1 solution for t∈(0, 3]        1 solution for t∈[−3, 0)  ⇒ 3 solutions      (t/n)=sin t  −n≤t≤n  sin t ≥0 ⇒ 2kπ≤t≤(2k+1)π  First time more than 3 solutions possible  at n=7  −7≤t≤7  0≤t≤π∨2π≤t≤3π  but in fact (t/7)>sin t; 2π≤t    n=8 ⇒ (t/8)=sin t has 7 solutions

x=sin3xt=3xt3=sintt1=01t313t3sint00tπ;π>31solutionfort(0,3]1solutionfort[3,0)3solutionstn=sintntnsint02kπt(2k+1)πFirsttimemorethan3solutionspossibleatn=77t70tπ2πt3πbutinfactt7>sint;2πtn=8t8=sinthas7solutions

Answered by mr W last updated on 17/Aug/24

say 3x=t, the equation becomes   (t/3)=sin t. let′s generall look at the  equation kx=sin x.   we see x=0 is always a root. besides  due to symmetry if x=a is a root,   then x=−a is also a root. therefore  the number of roots is always odd.  due to symmetry we only need to  treat k≥0. for x=0, sin x=0 has  infinite roots. so now we take k>0.

say3x=t,theequationbecomest3=sint.letsgeneralllookattheequationkx=sinx.weseex=0isalwaysaroot.besidesduetosymmetryifx=aisaroot,thenx=aisalsoaroot.thereforethenumberofrootsisalwaysodd.duetosymmetryweonlyneedtotreatk0.forx=0,sinx=0hasinfiniteroots.sonowwetakek>0.

Commented by mr W last updated on 17/Aug/24

Commented by mr W last updated on 17/Aug/24

(kx)′=(sin x)′   ⇒k=cos x=(√(1−k^2 x^2 )) ⇒x=(√((1/k^2 )−1))  2(n−1)π<x<(2(n−1)+(1/2))π  4(n−1)^2 π^2 <x^2 <4(n−(3/4))^2 π^2   4(n−1)^2 π^2 +1<(1/k_n ^2 )<4(n−(3/4))^2 π^2 +1  (1/( (√(4(n−(3/4))^2 π^2 +1))))<k_n <(1/( (√(4(n−1)^2 π^2 +1))))  k_n =cos (√((1/k_n ^2 )−1))  this equation has infinite solutions:  k_1 , k_2 , k_3 , ...  k_1 =1  k_2 ≈(1/(7.789706))  k_3 ≈(1/(14.101695))  k_4 ≈(1/(20.395833))  ......  at x=0: k=k_1 =1.   if k≥k_1 =1, there is one root x=0.  if k<k_1 =1, there are at least 3 roots.    generally  for k=k_n  there are 4n−3 roots  for k_(n+1) <k<k_n  there are 4n−1 roots    back to the original question with  x=sin 3x.  it is the same as (x/3)=sin x  since k=(1/3)<k_1 , >k_2  ⇒it has 3 roots.

(kx)=(sinx)k=cosx=1k2x2x=1k212(n1)π<x<(2(n1)+12)π4(n1)2π2<x2<4(n34)2π24(n1)2π2+1<1kn2<4(n34)2π2+114(n34)2π2+1<kn<14(n1)2π2+1kn=cos1kn21thisequationhasinfinitesolutions:k1,k2,k3,...k1=1k217.789706k3114.101695k4120.395833......atx=0:k=k1=1.ifkk1=1,thereisonerootx=0.ifk<k1=1,thereareatleast3roots.generallyfork=knthereare4n3rootsforkn+1<k<knthereare4n1rootsbacktotheoriginalquestionwithx=sin3x.itisthesameasx3=sinxsincek=13<k1,>k2ithas3roots.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com