Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 210787 by mnjuly1970 last updated on 19/Aug/24

    { ((  If, D : x^2  +y^( 2)  + z^( 2) ≤1)),(( ⇒∫∫_D^  ∫(( x^2  + 2y^( 2) )/(x^2  + 4y^2  +z^2 )) dxdydz=?)) :}

{If,D:x2+y2+z21Dx2+2y2x2+4y2+z2dxdydz=?

Answered by BHOOPENDRA last updated on 19/Aug/24

((2π)/3)

2π3

Commented by mnjuly1970 last updated on 19/Aug/24

please  with explanation λ

pleasewithexplanationλ

Answered by Berbere last updated on 19/Aug/24

(x,y,z)→(z,y,x)  dont Change D by symetrie  =V=∫∫∫_D ((x^2 +2y^2 )/(x^2 +4y^2 +z^2 ))dxdydz=∫∫∫_D ((z^2 +2y^2 +x^2 )/(x^2 +4y^2 +z^2 ))dxdydz  ⇒2V=∫∫∫_D ((x^2 +4y^2 +z^2 )/(x^2 +4y^2 +z^2 ))dxdydz=2V=∫∫∫_D dxdydz  =2V=Volum(D)=(4/3)π∈Spher of radius 1  V=((2π)/3)

(x,y,z)(z,y,x)dontChangeDbysymetrie=V=Dx2+2y2x2+4y2+z2dxdydz=Dz2+2y2+x2x2+4y2+z2dxdydz2V=Dx2+4y2+z2x2+4y2+z2dxdydz=2V=Ddxdydz=2V=Volum(D)=43πSpherofradius1V=2π3

Commented by mnjuly1970 last updated on 19/Aug/24

 ⋛

Answered by BHOOPENDRA last updated on 19/Aug/24

Commented by BHOOPENDRA last updated on 21/Aug/24

x^2 +y^2 +z^2 =1  f(x,y)=((x^2 +2y^2 )/(x^2 +4y^2 +z^2 ))

x2+y2+z2=1f(x,y)=x2+2y2x2+4y2+z2

Answered by BHOOPENDRA last updated on 19/Aug/24

Answered by BHOOPENDRA last updated on 19/Aug/24

Given that the region D is   a sphere  x^2 +y^2 +z^2 ≤1  V=∫∫∫ ((x^2 +2y^2 )/(x^2 +4y^2 +z^2 )) dxdydz  if we apply the transformation  (x,y,z)→(z,y,x) integral becomes  V=∫∫∫_D ((z^2 +2y^2 )/(z^2 +4y^2 +x^2 )) dxdydz  By symmetry swapping x and z does  not change the value of the integral  because integrand and the limits  of integration remain the same.  This leads to   2V=∫∫∫_D (((x^2 +2y^2 )/(x^2 +4y^2 +z^2 ))+((z^2 +2y^2 )/(z^2 +4y^2 +x^2 )))dxdydz    Now   ∫∫∫_D 1dxdydz  2V=volume of D {Vol(D)}          =(4/3)π r^3 =(4/3)π1^3 =(4/3)π  V=(2/3)π

GiventhattheregionDisaspherex2+y2+z21V=x2+2y2x2+4y2+z2dxdydzifweapplythetransformation(x,y,z)(z,y,x)integralbecomesV=Dz2+2y2z2+4y2+x2dxdydzBysymmetryswappingxandzdoesnotchangethevalueoftheintegralbecauseintegrandandthelimitsofintegrationremainthesame.Thisleadsto2V=D(x2+2y2x2+4y2+z2+z2+2y2z2+4y2+x2)dxdydzNowD1dxdydz2V=volumeofD{Vol(D)}=43πr3=43π13=43πV=23π

Commented by BHOOPENDRA last updated on 19/Aug/24

Commented by BHOOPENDRA last updated on 21/Aug/24

plot  when  x^2  +y^2 +z^2 =1  f(z,y)=((z^2 +2y^2 )/(z^2 +4y^2 +z^2 ))

plotwhenx2+y2+z2=1f(z,y)=z2+2y2z2+4y2+z2

Commented by mnjuly1970 last updated on 19/Aug/24

Answered by mr W last updated on 19/Aug/24

I=∫∫∫((x^2 +4y^2 +z^2 −2y^2 −z^2 )/(x^2 +4y^2 +z^2 ))dxdydz   =∫∫∫(1−((2y^2 +z^2 )/(x^2 +4y^2 +z^2 )))dxdydz   =V−I_1   with I_1 =∫∫∫(((2y^2 +z^2 )/(x^2 +4y^2 +z^2 )))dxdydz  I_1 =∫∫∫(((2y^2 +x^2 )/(z^2 +4y^2 +x^2 )))dzdydx  I_1 +I_1 =∫∫∫(((2y^2 +z^2 )/(x^2 +4y^2 +z^2 ))+((2y^2 +x^2 )/(x^2 +4y^2 +z^2 )))dxdydz     =∫∫∫(((x^2 +4y^2 +z^2 )/(x^2 +4y^2 +z^2 )))dxdydz     =∫∫∫dxdydz     =V  ⇒I_1 =(V/2)  ⇒I=V−(V/2)=(V/2)=(1/2)×((4π×1^3 )/3)=((2π)/3)

I=x2+4y2+z22y2z2x2+4y2+z2dxdydz=(12y2+z2x2+4y2+z2)dxdydz=VI1withI1=(2y2+z2x2+4y2+z2)dxdydzI1=(2y2+x2z2+4y2+x2)dzdydxI1+I1=(2y2+z2x2+4y2+z2+2y2+x2x2+4y2+z2)dxdydz=(x2+4y2+z2x2+4y2+z2)dxdydz=dxdydz=VI1=V2I=VV2=V2=12×4π×133=2π3

Commented by mnjuly1970 last updated on 20/Aug/24

grateful sir W

gratefulsirW

Terms of Service

Privacy Policy

Contact: info@tinkutara.com