Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 211180 by Durganand last updated on 30/Aug/24

Answered by mr W last updated on 30/Aug/24

(ax+by+c)((x/a)+(y/b)+d)  x^2 +y^2 +((a/b)+(b/a))xy+(ad+(c/a))x+(bd+(c/b))+cd  =x^2 +y^2 −(2/(sin θ))xy  ⇒cd=0  ⇒ad+(c/a)=0  ⇒bd+(c/b)=0  ⇒(a/b)+(b/a)=−(2/(sin θ))  ⇒c=d=0  say −(a/b)=k=tan α_1   ⇒k+(1/k)=(2/(sin θ))  ⇒k^2 −((2k)/(sin θ))+1=0  ⇒k=((1±cos θ)/(sin θ))=tan (θ/2) or tan ((π/2)−(θ/2))  ⇒α_1 =(θ/2), α_2 =(π/2)−(θ/2)  ⇒α_1 =(π/2)−(θ/2), α_2 =(θ/2)  line 1: ax+by=0 ⇒y=−(a/b)x=kx=(tan (θ/2))x  line 2: (x/a)+(y/b)=0 ⇒y=−(b/a)x=(x/k)=(x/(tan (θ/2)))  angle between them =(π/2)±θ ✓

(ax+by+c)(xa+yb+d)x2+y2+(ab+ba)xy+(ad+ca)x+(bd+cb)+cd=x2+y22sinθxycd=0ad+ca=0bd+cb=0ab+ba=2sinθc=d=0sayab=k=tanα1k+1k=2sinθk22ksinθ+1=0k=1±cosθsinθ=tanθ2ortan(π2θ2)α1=θ2,α2=π2θ2α1=π2θ2,α2=θ2line1:ax+by=0y=abx=kx=(tanθ2)xline2:xa+yb=0y=bax=xk=xtanθ2anglebetweenthem=π2±θ

Commented by mr W last updated on 30/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com