Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2112 by Yozzi last updated on 03/Nov/15

Prove that, ∀n∈N,  H(2^n )≥1+(n/2)  where H(m)=Σ_(r=1) ^m (1/r).

$${Prove}\:{that},\:\forall{n}\in\mathbb{N}, \\ $$$${H}\left(\mathrm{2}^{{n}} \right)\geqslant\mathrm{1}+\frac{{n}}{\mathrm{2}} \\ $$$${where}\:{H}\left({m}\right)=\underset{{r}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{\mathrm{1}}{{r}}. \\ $$

Commented by 123456 last updated on 03/Nov/15

n=0⇒H(2^n )=H(1)=1≥1+(0/2)  n=1⇒H(2^n )=H(2)=(3/2)≥1+(1/2)

$${n}=\mathrm{0}\Rightarrow\mathrm{H}\left(\mathrm{2}^{{n}} \right)=\mathrm{H}\left(\mathrm{1}\right)=\mathrm{1}\geqslant\mathrm{1}+\frac{\mathrm{0}}{\mathrm{2}} \\ $$$${n}=\mathrm{1}\Rightarrow\mathrm{H}\left(\mathrm{2}^{{n}} \right)=\mathrm{H}\left(\mathrm{2}\right)=\frac{\mathrm{3}}{\mathrm{2}}\geqslant\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by 123456 last updated on 03/Nov/15

H(m)=1+(1/2)+∙∙∙+(1/m)              <1+(1/2)+∙∙∙+(1/2)  m>2⇒(1/m)<(1/2)              <1+((m−1)/2)  H(m)>1+(1/m)+∙∙∙+(1/m)              >1+((m−1)/m)  1+((m−1)/m)<H(m)<1+((m−1)/2)  −−−−−−−  continue

$$\mathrm{H}\left({m}\right)=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:<\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{2}}\:\:{m}>\mathrm{2}\Rightarrow\frac{\mathrm{1}}{{m}}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:<\mathrm{1}+\frac{{m}−\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{H}\left({m}\right)>\mathrm{1}+\frac{\mathrm{1}}{{m}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:>\mathrm{1}+\frac{{m}−\mathrm{1}}{{m}} \\ $$$$\mathrm{1}+\frac{{m}−\mathrm{1}}{{m}}<\mathrm{H}\left({m}\right)<\mathrm{1}+\frac{{m}−\mathrm{1}}{\mathrm{2}} \\ $$$$−−−−−−− \\ $$$$\mathrm{continue} \\ $$

Answered by prakash jain last updated on 04/Nov/15

H(1)=1  H(2^1 )=1+(1/2)=(3/2)≥((1+1)/2)  H(2^2 )=H(2)+(1/3)+(1/4)≥(3/2)+(1/4)+(1/4)=(3/2)+(1/2)=((1+3)/2)  assume H(2^n )≥((1+n)/2)  H(2^n )=H(2^n )+(1/(2^n +1))+(1/(2^n +2))+...+(1/2^(n+1) )  ≥((1+n)/2)+(1/2^(n+1) )+..+(1/2^(n+1) )=((1+n)/2)+(2^n /2^(n+1) )  =((1+n)/2)+(1/2)=((1+(n+1))/2)  H(2^n )≥((1+n)/2)⇒H(2^(n+1) )≥((1+(n+1))/2)  Result follows by induction.

$${H}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${H}\left(\mathrm{2}^{\mathrm{1}} \right)=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}\geqslant\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}} \\ $$$${H}\left(\mathrm{2}^{\mathrm{2}} \right)={H}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}+\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{assume}\:{H}\left(\mathrm{2}^{{n}} \right)\geqslant\frac{\mathrm{1}+{n}}{\mathrm{2}} \\ $$$${H}\left(\mathrm{2}^{{n}} \right)={H}\left(\mathrm{2}^{{n}} \right)+\frac{\mathrm{1}}{\mathrm{2}^{{n}} +\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}^{{n}} +\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$\geqslant\frac{\mathrm{1}+{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }+..+\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }=\frac{\mathrm{1}+{n}}{\mathrm{2}}+\frac{\mathrm{2}^{{n}} }{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$=\frac{\mathrm{1}+{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}+\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${H}\left(\mathrm{2}^{{n}} \right)\geqslant\frac{\mathrm{1}+{n}}{\mathrm{2}}\Rightarrow{H}\left(\mathrm{2}^{{n}+\mathrm{1}} \right)\geqslant\frac{\mathrm{1}+\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{Result}\:\mathrm{follows}\:\mathrm{by}\:\mathrm{induction}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com