Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211250 by RojaTaniya last updated on 01/Sep/24

Find the number of 4 digit numbers   so that when decomposed into prime   factors, have the sum of prime factors   equal to the sum of the exponents?

Findthenumberof4digitnumberssothatwhendecomposedintoprimefactors,havethesumofprimefactorsequaltothesumoftheexponents?

Answered by mr W last updated on 03/Sep/24

say the number is N=p^a q^b r^c ...  1000≤N≤9999  p,q,r,... ∈ P and p<q<r<...  a,b,c,... ∈ N  p+q+r+...=a+b+c+...    (p^a q^b r^c )_(min) =p^(p+q+r−2) q^1 r^1   (p^a q^b r^c )_(max) =p^1 q^1 r^(p+q+r−2)   no solution if   p^(p+q+r−2) q^1 r^1 >9999 or  p^1 q^1 r^(p+q+r−2) <1000    case 1: N=p^a   only one solution: p=a=5  since 3^3 =27<1000, 5^5 =3125, 7^7 =823543>9999  case 2: N=p^a q^b   2^1 3^4 =162<1000 ⇒no solution  2^6 5^1 =320      2^3 5^4 =5000, 2^4 5^3 =2000  2^8 7^1 =1792      2^7 7^2 =6272  2^(12) 11^1 =45056>9999 ⇒no solution  3^7 5^1 =10935>9999 ⇒no solution  case 3: N=p^a q^b r^c   2^8 3^1 5^1 =3840     2^7 3^2 5^1 =5760, 2^7 3^1 5^2 =9600, 2^6 3^3 5^1 =8640  2^(10) 3^1 7^1 =21504>9999 ⇒no solution  case 4: N=p^a q^b r^c s^d   2^(14) 3^1 5^1 7^1 =1720320>9999 ⇒no solutio    summary:  there are 9 such 4−digit numbers:  1792, 2000, 3125, 3840, 5000,   5760, 6272, 8640, 9600

saythenumberisN=paqbrc...1000N9999p,q,r,...Pandp<q<r<...a,b,c,...Np+q+r+...=a+b+c+...(paqbrc)min=pp+q+r2q1r1(paqbrc)max=p1q1rp+q+r2nosolutionifpp+q+r2q1r1>9999orp1q1rp+q+r2<1000case1:N=paonlyonesolution:p=a=5since33=27<1000,55=3125,77=823543>9999case2:N=paqb2134=162<1000nosolution2651=3202354=5000,2453=20002871=17922772=6272212111=45056>9999nosolution3751=10935>9999nosolutioncase3:N=paqbrc283151=3840273251=5760,273152=9600,263351=86402103171=21504>9999nosolutioncase4:N=paqbrcsd214315171=1720320>9999nosolutiosummary:thereare9such4digitnumbers:1792,2000,3125,3840,5000,5760,6272,8640,9600

Commented by Rasheed.Sindhi last updated on 03/Sep/24

Elegant!

Elegant!

Commented by mr W last updated on 03/Sep/24

thanks!  “brute force” approach, not smart,  but effective.

thanks!bruteforceapproach,notsmart,buteffective.

Commented by Rasheed.Sindhi last updated on 03/Sep/24

e^x cellent sir!

excellentsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com