Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211367 by mr W last updated on 07/Sep/24

solve for R^+   x^2 +y^2 −kxy=c^2   y^2 +z^2 −kyz=a^2   z^2 +x^2 −kzx=b^2   (k is constant)

solveforR+x2+y2kxy=c2y2+z2kyz=a2z2+x2kzx=b2(kisconstant)

Commented by ajfour last updated on 11/Sep/24

https://youtu.be/LgXNcnsOJtM?si=JMlLjooG3OzelvXT

Answered by a.lgnaoui last updated on 09/Sep/24

k+2=(((x+y)^2 −c^2 )/(xy))=(((y+z)^2 −a^2 )/(yz))=(((x+z)^2 −b^2 )/(xz))  alors:  xy=(((x+y)^2 )/(k+2)) −(c^2 /(k+2))(1)  yz=(((y+z)^2 )/(k+2))−(a^2 /(k+2)) (2)     xz=(((x+z)^2 )/(k+2))−(b^2 /(k+2))(3)       2(x^2 +y^2 +z^2 )−k(xy+yz+xz)=a^2 +b^2 +c^2      4(x^2 +y^2 +z^3 )−k[(x+y+z)^2 −(x^2 +y^2 +z^2 )]=2(a+b+c)      (4+k)(x^2 +y^2 +z^2 )−k(x+y+z)^2 =2(a^2 +b^2 +c^2 )    or  x^2 +y^2 +z^2 =(x+y+z)^2 −2(xy+yz+xz)  ⇒    3(x+y+z)^2 =2(a^2 +b^2 +c^2 )     x+y+z=(√((2/3)(a^2 +b^2 +c^2 ) )) (i)        x+y=(√((2/3)(a^2 +b^2 +c^2 ))) −z       (a^2 −b^2 )=(y^2 −x^2 )−kz(y−x)    =(y−x)[(x+y)−kz]  soit  a^2 −b^2 =(y−x)[(√((2/3)(a^2 +b^2 +c^2 ))) −z−kz]      y−x=((a^2 −b^2 )/( [(√((2/3)(a^2 +b^2 +c^3 ))) −(k+1)z]))   { ((y=((a^2 −b^2 )/(2[(√((2/3)e))−(k+1)z])) −(z/2)+(1/2)(√((2/3)e)))),((e=(√(a^2 +b^2 +c^2 )))) :}    a^2 =(y−(k/2)z)^2 +(((4−k^2 )/4))z^2     y=(k/2)z+(√(a^2 −(((4−k^2 )/4))z^2 ))    donc on a lequation  en z     z^2 (√(a^2 −((4−k^2 )/4))) + z(((k+1)/2))−((a^2 −b^2 )/(2[(√((2/3)e)) −(k+1)z]))  =(1/2)(√((2/3)e))  this equation is long     othere methode:  −−−−−−−−−  ..(i)⇒  (√((2/3)e)) −z=(x+y)   k+2=(((x+y)^2 −c^2 )/(xy))=(((y+z)^2 −a^2 )/(yz))  ⇒   ((x+y)−c)/x)=((y+z)−a)/z)          ⇒a^2 +   ((z[(x+y)−c^2 ])/x)=(y+z)    ((x+y)−c)/x)=((y+z)−a)/z)=(((x+y)^2 −(y+z)^2 +a^2 −c^2 )/(x−z))                 (((x−z)(x+z+2y)+)/(x−z))=(((x+z+2y))/1)+(((a−c)/(x−z)))      (y+z)^2 =((z[(x+y)^2 −c^2 ])/x)+a^2     y+z=((k/2)+1)z+(√(a^2 −((4−k^2 )/4)z^2 ))      (((y+z)^2 −a^2 )/(yz))=k+2  ⇒(y+z)^2 =(k+2)yz+a^2       =a^2 +(k+2)z((k/2)z+(√(a^2 −((4−k^2 )/4)z^2 )) )  donc    (z+(k/2)z+(√(a^3 −((4−k^2 )/4)z^2  )) )^2 =  a^2 +(((k+2)k)/2)z^2 +(k+2)z(√(a−((4−k^2 )/4)z^2 )) .        soit apres calculs    ((((k+2)^2 )/4)z^2 −((k(k+2))/2)z^2 )−((4−k)/4)z^2 =0  (((k+2)^2 −2(k+2))/4)=((4−k)/4)  k^2 +3k−4=0    △=25     { ((k=+1)),((k=−4)) :}  on choisit  k>0    k=1  3=(((x+y)^2 −c^2 )/(xy))     =(((y+z)^2 −a^2 )/(yz))     (x+y)^2 −3xy−c^2 =0    (x−(3/2)y)^2 −((9/4)y^2 +c^2 )=0  (ii)      (y−(3/2)z)^2 −((9/4)z^2 +c^2 )=0   (iii)  y=(2/2)z+(√(a−(3/4)z^2 ))  ⇒(a−(3/4)z^2 )=c^2 +(9/4)z^2   3z^2 =a^2 −c^2      z=(√((a^2 −c^2 )/3))     { (((x+y)=(√((2/3)(a^2 +b^2 +c^2 ))) −(√((a^2 −c^2 )/3)) )),((xy      =(((x+y)^2 −c^2 )/3)=(((2/3)(a+b+c)+((a^2 −c^2 )/3)−(2/3)(√(2a^2 −c^2 )(a^2 +b^2 +c^2 )) −c^2 )/3))) :}     { ((xy=((2/9)(√(a+b+c)) )[((√(a^2 +b^2 +c^2 )) −(√(a^2 −c^2 )) )]+((a^2 −4c^2 )/9))),((x+y       =(√((2/3)(a^2 +b^2 +c^2 )) −(√((a^2 −c^2 )/3)))) :}   { ((k^2 −sk+p=0)),((s=(x+y)  p=xy)) :}  k=((s±(√(s^2 −4p)))/2)  s^(2 ) =3xy+c^2    p=xy  ⇒  k=((3xy±(√(9xy−4xy)))/2)  =((3xy+(√(5xy)))/2)=(1/2)(√(xy)) [3(√(xy)) +5]   { (((√x)=(1/2)((√y) (3(√(xy)) +5)      )),(((√y) =(1/2)(√x) (3(√(xy)) −5))) :}    (√(xy)) =(1/4)(√(xy)) (3(√(xy)) +5)(3(√(xy)) −5)  1=(1/4)(3m+5)(3m−5)       m=(√(xy))  9m^2 −25=4  m=((√(29))/3)      (√(xy)) =((√(29))/3)   (x+y=(√(c^2 +3xy))  ⇒ x+y=(√(c^2 +((29)/3)))   { ((x+y    =(√(c^2 +((29)/3))))),((xy        =((29)/9))) :}   { ((△=((3c^2 +29)/3)−((116)/9))),( { ((x=(((1/3)((√(27c^2 −29)) −(√(9c^2 +29)) ))/6))),((y=(((1/3)((√(27c^2 −29)) +(√(9c^2 +29)) ))/6))) :}) :}  Recap   k=1    x=(((√(27c^2 −29)) −(√(9c^2 +29)))/(18))  y=(((√(27c^2 −29)) +(√(9c^2 +29)))/(18))  z=((√(a^2 −c^2 ))/3)  pour  ( k=−4):   (meme procedure)

k+2=(x+y)2c2xy=(y+z)2a2yz=(x+z)2b2xzalors:xy=(x+y)2k+2c2k+2(1)yz=(y+z)2k+2a2k+2(2)xz=(x+z)2k+2b2k+2(3)2(x2+y2+z2)k(xy+yz+xz)=a2+b2+c24(x2+y2+z3)k[(x+y+z)2(x2+y2+z2)]=2(a+b+c)(4+k)(x2+y2+z2)k(x+y+z)2=2(a2+b2+c2)orx2+y2+z2=(x+y+z)22(xy+yz+xz)3(x+y+z)2=2(a2+b2+c2)x+y+z=23(a2+b2+c2)(i)x+y=23(a2+b2+c2)z(a2b2)=(y2x2)kz(yx)=(yx)[(x+y)kz]soita2b2=(yx)[23(a2+b2+c2)zkz]yx=a2b2[23(a2+b2+c3)(k+1)z]{y=a2b22[23e(k+1)z]z2+1223ee=a2+b2+c2a2=(yk2z)2+(4k24)z2y=k2z+a2(4k24)z2donconalequationenzz2a24k24+z(k+12)a2b22[23e(k+1)z]=1223ethisequationislongotheremethode:..(i)23ez=(x+y)k+2=(x+y)2c2xy=(y+z)2a2yzx+y)cx=y+z)aza2+z[(x+y)c2]x=(y+z)x+y)cx=y+z)az=(x+y)2(y+z)2+a2c2xz(xz)(x+z+2y)+xz=(x+z+2y)1+(acxz)(y+z)2=z[(x+y)2c2]x+a2y+z=(k2+1)z+a24k24z2(y+z)2a2yz=k+2(y+z)2=(k+2)yz+a2=a2+(k+2)z(k2z+a24k24z2)donc(z+k2z+a34k24z2)2=a2+(k+2)k2z2+(k+2)za4k24z2.soitaprescalculs((k+2)24z2k(k+2)2z2)4k4z2=0(k+2)22(k+2)4=4k4k2+3k4=0=25{k=+1k=4onchoisitk>0k=13=(x+y)2c2xy=(y+z)2a2yz(x+y)23xyc2=0(x32y)2(94y2+c2)=0(ii)(y32z)2(94z2+c2)=0(iii)y=22z+a34z2(a34z2)=c2+94z23z2=a2c2z=a2c23{(x+y)=23(a2+b2+c2)a2c23xy=(x+y)2c23=23(a+b+c)+a2c23232a2c2)(a2+b2+c2c23{xy=(29a+b+c)[(a2+b2+c2a2c2)]+a24c29x+y=23(a2+b2+c2a2c23{k2sk+p=0s=(x+y)p=xyk=s±s24p2s2=3xy+c2p=xyk=3xy±9xy4xy2=3xy+5xy2=12xy[3xy+5]{x=12(y(3xy+5)y=12x(3xy5)xy=14xy(3xy+5)(3xy5)1=14(3m+5)(3m5)m=xy9m225=4m=293xy=293(x+y=c2+3xyx+y=c2+293{x+y=c2+293xy=299{=3c2+2931169{x=13(27c2299c2+29)6y=13(27c229+9c2+29)6Recapk=1x=27c2299c2+2918y=27c229+9c2+2918z=a2c23pour(k=4):(memeprocedure)

Commented by mr W last updated on 09/Sep/24

thanks for trying!   but you can not determine the value   of k by yourself. k is a given constant,   for example k=1.5.

thanksfortrying!butyoucannotdeterminethevalueofkbyyourself.kisagivenconstant,forexamplek=1.5.

Commented by a.lgnaoui last updated on 09/Sep/24

thank you

thankyou

Answered by ajfour last updated on 08/Oct/24

x^2 +y^2 +z^2 =s  kxy+z^2 =s−c^2   kyz+x^2 =s−a^2   kzx+y^2 =s−b^2   If  x=py  ,  z=qy  ⇒  (kp+q^2 )y^2 =s−c^2          (kq+p^2 )y^2 =s−a^2       &  (kpq+1)y^2 =s−b^2   s=(1+p^2 +q^2 )y^2   ((1+kp−p^2 )/(1+kq−q^2 ))=(c^2 /a^2 )    ...(i)  &  ((2+k(p+q)−(p^2 +q^2 ))/(p^2 +q^2 −kpq))=((a^2 +c^2 )/b^2 )   ..(ii)  ...

x2+y2+z2=skxy+z2=sc2kyz+x2=sa2kzx+y2=sb2Ifx=py,z=qy(kp+q2)y2=sc2(kq+p2)y2=sa2&(kpq+1)y2=sb2s=(1+p2+q2)y21+kpp21+kqq2=c2a2...(i)&2+k(p+q)(p2+q2)p2+q2kpq=a2+c2b2..(ii)...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com