All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 211370 by liuxinnan last updated on 07/Sep/24
F(0)=0F(1)=1F(n+1)=F(n)+F(n−1)prove:189=∑+∞i=110−iF(i−1)
Answered by mr W last updated on 07/Sep/24
p2−p−1=0⇒p=1±52⇒F(n)=A(1+52)n+B(1−52)nF(0)=A+B=0⇒B=−AF(1)=A(1+52)−A(1−52)=1⇒A=15⇒F(n)=15[(1+52)n−(1−52)n]∑∞n=110−nF(n−1)=∑∞n=010−(n+1)F(n)=1105∑∞n=0110n[(1+52)n−(1−52)n]=1105∑∞n=0[(1+520)n−(1−520)n]=1105(11−1+520−11−1−520)=25(19+5356−19−5356)=25(25356)=189✓
Commented by liuxinnan last updated on 09/Sep/24
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com