Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 211383 by zakirullah last updated on 07/Sep/24

Commented by zakirullah last updated on 07/Sep/24

please need difference with solution.

pleaseneeddifferencewithsolution.

Answered by A5T last updated on 07/Sep/24

(√((−9)^2 ))=(√(−9×−9))=(√(81))=9    ✓  (√(−9×−9))≠(√(−9))×(√(−9))=((√(−9)))^2   ((√(−9)))^2 =(3i)^2 =−9                         ✓  ((√(−9)))^2 =(√(−9))×(√(−9))≠(√(−9×−9))    (√(a×b))=(√a)×(√b) when a and b are not both <0

(9)2=9×9=81=99×99×9=(9)2(9)2=(3i)2=9(9)2=9×99×9a×b=a×bwhenaandbarenotboth<0

Commented by zakirullah last updated on 07/Sep/24

a boundle of thanks

aboundleofthanks

Answered by Frix last updated on 07/Sep/24

−9=9e^(iπ)   (√((−9)^2 ))=(√((9e^(iπ) )^2 ))=(√(81e^(2iπ) _((∗)) ))=(√(81e^0 ))=(√(81))=9  ((√(−9)))^2 =((√(9e^(iπ) )))^2 =(3e^(i(π/2)) )^2 =9e^(iπ) =−9    (∗) e^(2iπ)  is just an intermediate step result.  Before the next calculation we have to make  sure the angle is ∈(−π, π].  This rule lately got lost on its path through  the intellectual night of the www...    z∈C: z=re^(iθ) ∧r≥0∧−π<θ≤π  ⇒ sometimes (z^q )^(1/q) ≠z  Example:  (1+i)^5 =((√2)e^(i(π/4)) )^5 =4(√2)e^(i((5π)/4)) =4(√2)e^(−i((3π)/4)) =  =−4−4i  (−4−4i)^(1/5) =(4(√2)e^(−((3π)/4)) )^(1/5) =(√2)e^(−i((3π)/(20))) =  =(√2)(cos ((3π)/(20)) −sin ((3π)/(20)))≈1.26−.643i

9=9eiπ(9)2=(9eiπ)2=81e2iπ()=81e0=81=9(9)2=(9eiπ)2=(3eiπ2)2=9eiπ=9()e2iπisjustanintermediatestepresult.Beforethenextcalculationwehavetomakesuretheangleis(π,π].Thisrulelatelygotlostonitspaththroughtheintellectualnightofthewww...zC:z=reiθr0π<θπsometimes(zq)1qzExample:(1+i)5=(2eiπ4)5=42ei5π4=42ei3π4==44i(44i)15=(42e3π4)15=2ei3π20==2(cos3π20sin3π20)1.26.643i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com