Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 211454 by BaliramKumar last updated on 09/Sep/24

Answered by A5T last updated on 09/Sep/24

Let N=p_1 ^2 ×p_2 ^4 ;then it has (2+1)(4+1)=15 divisors  ⇒N^2 =p_1 ^4 ×p_2 ^8 ; then it has (4+1)(8+1)=45

LetN=p12×p24;thenithas(2+1)(4+1)=15divisorsN2=p14×p28;thenithas(4+1)(8+1)=45

Answered by mr W last updated on 11/Sep/24

case 1: N=p^a   a+1=15 ⇒a=14  p≥2 ⇒N≥2^(14) =16384 >9999   ⇒no solution    case 2: N=p^a q^b   (a+1)(b+1)=15=3×5 ⇒a, b=2, 4  2^2 5^4 =2500 ✓  2^2 7^4 =9604 ✓  3^2 5^4 =5625 ✓ 5^2 3^4 =2025 ✓  3^4 7^2 =3969 ✓  ⇒there are 5 solutions  N^2 =p^(2a) q^(2b)  has (2a+1)(2b+1)  =5×9=45 divisors

case1:N=paa+1=15a=14p2N214=16384>9999nosolutioncase2:N=paqb(a+1)(b+1)=15=3×5a,b=2,42254=25002274=96043254=56255234=20253472=3969thereare5solutionsN2=p2aq2bhas(2a+1)(2b+1)=5×9=45divisors

Terms of Service

Privacy Policy

Contact: info@tinkutara.com