Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 211578 by MrGaster last updated on 13/Sep/24

                         ∫_0 ^(+∞) (x/( (√(1+x^4 ))))dx.

0+x1+x4dx.

Answered by lepuissantcedricjunior last updated on 13/Sep/24

∫_0 ^∞ ((xdx)/( (√(1+x^4 ))))=k  k=∫_0 ^∞ ((d(x^2 ))/(2(√(1+(x^2 )^2 ))))   ^(x^2 =tant=>d(x^2 )=(1+tan^2 t)dt)   k=∫_0 ^(𝛑/2) ((1+tan^2 t)/(1/(cost)))=∫_0 ^(𝛑/2) (cost+((sin^2 )/(cost)))dt  k=1+∫_0 ^(𝛑/2) ((1/(cost))−cost)dt  k=∫_0 ^(𝛑/2) ((1/2)(((cost)/(1−sint))+((cost)/(1+sint))))dt  k=(1/2)[ln(((1+sint)/(1−sint)))]_0 ^(𝛑/2) =−∞

0xdx1+x4=kk=0d(x2)21+(x2)2x2=tant=>d(x2)=(1+tan2t)dtk=0π/21+tan2t1cost=0π2(cost+sin2cost)dtk=1+0π2(1costcost)dtk=0π2(12(cost1sint+cost1+sint))dtk=12[ln(1+sint1sint)]0π2=

Answered by Frix last updated on 13/Sep/24

∫(x/( (√(1+x^4 ))))dx =^([t=x^2 +(√(x^4 +1))])  (1/2)∫(dt/t)=((ln t)/2)=  =((ln (x^2 +(√(x^4 +1))))/2)+C  ∫_0 ^∞ (x/( (√(1+x^4 ))))dx diverges

x1+x4dx=[t=x2+x4+1]12dtt=lnt2==ln(x2+x4+1)2+C0x1+x4dxdiverges

Terms of Service

Privacy Policy

Contact: info@tinkutara.com