Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 211579 by MrGaster last updated on 13/Sep/24

                         ∫(1/((1−x^4 )(√(1+x^2 ))))dx.

1(1x4)1+x2dx.

Answered by lepuissantcedricjunior last updated on 13/Sep/24

∫(1/((1−x^2 )(1+x^2 )(√(1+x^2 ))))dx=k  x=tant=>dx=(1+tan^2 t)dt  k=∫((cost  dt)/((1−tan^2 t)))=∫((cos^2 t)/(cos^2 t−sin^2 t))dt     =∫((cos^2 t)/(cos2t))dt=∫((1+cos2t)/(2(cos2t)))dt     =(1/2)t+∫(1/(2cos2t))dt  o=tant=>dt=(do/(1+o^2 ))     m=∫(dt/(2(2cos^2 t−1)))=∫(do/(2((2/(1+o^2 ))−1)×(1+o^2 )))     =∫(do/((4−2−2o^2 )))=∫(do/(2(1−o^2 )))    =(1/2)∫(do/((1−o)(1+o)))=(1/4)∫((1/(1−o))+(1/(1+o)))do    =(1/4)ln∣((1+o)/(1−o))∣+c    k=(1/2)arctant+(1/4)ln∣((1+arctant)/(1−arctant))∣+c  k=(1/2)arctan(arctant)+(1/4)ln∣((1+arctan(arctanx))/(1−arctan(arctanx)))∣+c

1(1x2)(1+x2)1+x2dx=kx=tant=>dx=(1+tan2t)dtk=costdt(1tan2t)=cos2tcos2tsin2tdt=cos2tcos2tdt=1+cos2t2(cos2t)dt=12t+12cos2tdto=tant=>dt=do1+o2m=dt2(2cos2t1)=do2(21+o21)×(1+o2)=do(422o2)=do2(1o2)=12do(1o)(1+o)=14(11o+11+o)do=14ln1+o1o+ck=12arctant+14ln1+arctant1arctant+ck=12arctan(arctant)+14ln1+arctan(arctanx)1arctan(arctanx)+c

Commented by Frix last updated on 13/Sep/24

3^(rd)  line:  x=tan t ∧ dx=(1+tan^2  t)dt  leads to  k=∫((cos^3  t)/(cos^2  t −sin^2  t))dt  ⇒ everything else is wrong.

3rdline:x=tantdx=(1+tan2t)dtleadstok=cos3tcos2tsin2tdteverythingelseiswrong.

Answered by Frix last updated on 21/Sep/24

∫(dx/((1−x^4 )(√(1+x^2 )))) =^([t=(((√2)x)/( (√(x^2 +1))))])   =((√2)/4)∫ ((t^2 −2)/(t^2 −1))dt=((√2)/8)∫((1/(t+1))−(1/(t−1))+2)dt=  =((√2)/( 8))(2t+ln ((t+1)/(t−1)))=  =(x/(2(√(x^2 +1))))+((√2)/8)ln ∣(((√2)x+(√(x^2 +1)))/( (√2)x−(√(x^3 +1))))∣ +C

dx(1x4)1+x2=[t=2xx2+1]=24t22t21dt=28(1t+11t1+2)dt==28(2t+lnt+1t1)==x2x2+1+28ln2x+x2+12xx3+1+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com