Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211657 by hardmath last updated on 15/Sep/24

sin(9x) = sin(5x) + sin(3x)  find:  x = ?

sin(9x)=sin(5x)+sin(3x)find:x=?

Answered by Frix last updated on 15/Sep/24

sin ((2n+1)x) =sin x (1+2Σ_(k=1) ^n  cos (2kx))  ⇒  sin 9x −sin 5x −sin 3x =0  ⇔  2(cos 8x +cos 6x −cos 2x −(1/2))sin x =0  Let 0≤x<2π  ★ x=0∨x=π  cos 8x +cos 6x −cos 2x −(1/2)=0  This has a period of π and it′s symmetric  to ((nπ)/2)  ⇒ We must look for solutions x∈[0; (π/2)]  These should be at (((2k+1)π)/(30))  Testing leads to  ★ x=(π/(30)), ((7π)/(30)), ((11π)/(30)), ((13π)/(30))     [0; (π/2)]  ⇒ Due to symmetry  ★ x=((17π)/(30)), ((19π)/(39)), ((23π)/(30)), ((29π)/(30))     [(π/2); π]  ★ All these +π     [π; 2π)    We get  x=(π/(30)){0, 1, 7, 11, 13, 17, 19, 23, 29}+nπ

sin((2n+1)x)=sinx(1+2nk=1cos(2kx))sin9xsin5xsin3x=02(cos8x+cos6xcos2x12)sinx=0Let0x<2πx=0x=πcos8x+cos6xcos2x12=0Thishasaperiodofπanditssymmetrictonπ2Wemustlookforsolutionsx[0;π2]Theseshouldbeat(2k+1)π30Testingleadstox=π30,7π30,11π30,13π30[0;π2]Duetosymmetryx=17π30,19π39,23π30,29π30[π2;π]Allthese+π[π;2π)Wegetx=π30{0,1,7,11,13,17,19,23,29}+nπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com