Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211680 by RojaTaniya last updated on 16/Sep/24

 x, y are positive integer such     that, x^3 +y^3 +xy=911. (x,y)=?

x,yarepositiveintegersuchthat,x3+y3+xy=911.(x,y)=?

Commented by AlagaIbile last updated on 16/Sep/24

 That′s a symmetric Function    (x + y)^3  − 3xy(x + y) + xy = 911    a^3  − 3ba + b = 911    b = ((a^3  − 911)/(3a − 1))   Trying a = 10, 11,...    b = ((15^3  − 911)/(3(15)− 1)) = 56    x + y = 15 , xy = 56   ∴ (x,y) = (8,7) , (7,8)

ThatsasymmetricFunction(x+y)33xy(x+y)+xy=911a33ba+b=911b=a39113a1Tryinga=10,11,...b=1539113(15)1=56x+y=15,xy=56(x,y)=(8,7),(7,8)

Answered by A5T last updated on 16/Sep/24

WLOG, let x≥y⇒911=x^3 +y^3 +xy≥2y^3 +y^2   ⇒y≤7. Observe that x≤9, because 10^3 >911  Checking⇒y=7,x=8  ⇒(x,y)=(8,7) upto permutation.

WLOG,letxy911=x3+y3+xy2y3+y2y7.Observethatx9,because103>911Checkingy=7,x=8(x,y)=(8,7)uptopermutation.

Commented by RojaTaniya last updated on 16/Sep/24

Sir, perfect idea. Thanks.

Sir,perfectidea.Thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com