Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 211708 by Skyneless last updated on 17/Sep/24

Answered by Frix last updated on 18/Sep/24

∫(√(tan x))dx=       [t=2tan^(−1)  (√(tan x))]  =∫((1−cos t)/(1+cos^2  t))dt         ∫(1/(1+cos^2  t))dt=            [u=(((√2)tan t)/2)]       =((√2)/2)∫(du/(u^2 +1))=(((√2)tan^(−1)  u)/2)         −∫((cos t)/(1+cos^2  t))dt=            [v=(((√2)sin t)/2)]        =((√2)/2)∫(dv/(v^2 −1))=−(((√2)tanh^(−1)  v)/2)    ...which is nice somehow...

tanxdx=[t=2tan1tanx]=1cost1+cos2tdt11+cos2tdt=[u=2tant2]=22duu2+1=2tan1u2cost1+cos2tdt=[v=2sint2]=22dvv21=2tanh1v2...whichisnicesomehow...

Answered by BHOOPENDRA last updated on 18/Sep/24

let tanx =t^2          sec^2 x dx=2t dt         (1+t^4 )dx=2tdt  ⇒((2t)/((1+t^4 ))) dt=dx  =  ∫((2t^2 )/((1+t^4 ))) dt  = ∫  ((t^2 +1)/(1+t^4 )) dt+∫((t^2 −1)/(1+t^4 )) dt  = ∫((1+(1/t^2 ))/((1/t^2 )+t^2 )) dt+∫ ((1−(1/t^2 ))/((1/t^2 )+t^2 ))dt ( divided by t^2 )  =∫ ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt+∫((1−(1/t^2 ))/((t+(1/t))^2 −2))dt  Let =t−1/t=p ,t+1/t=q           =1+(1/t^2 ) dt =dp, 1−(1/t^2 ) dt =dq  =∫(1/(p^2 +2)) dp +∫(1/(q^2 −2)) dq  =(1/( (√2))) tan^(−1) (p/( (√2))) +(1/(2(√2))) log(((q−(√2))/(q+(√2))))+c  substituting all the values  p=t−(1/t),q=t+(1/t)  t=(√(tanx))  =(1/( (√2)))tan^(−1) (((tan x−1)/( (√(2tanx)))))+(1/(2(√2)))log(((tan x−(√(2tan x))+1)/(tan x+(√(2tan x))+1)))+c

lettanx=t2sec2xdx=2tdt(1+t4)dx=2tdt2t(1+t4)dt=dx=2t2(1+t4)dt=t2+11+t4dt+t211+t4dt=1+1t21t2+t2dt+11t21t2+t2dt(dividedbyt2)=1+1t2(t1t)2+2dt+11t2(t+1t)22dtLet=t1/t=p,t+1/t=q=1+1t2dt=dp,11t2dt=dq=1p2+2dp+1q22dq=12tan1p2+122log(q2q+2)+csubstitutingallthevaluesp=t1t,q=t+1tt=tanx=12tan1(tanx12tanx)+122log(tanx2tanx+1tanx+2tanx+1)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com