All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 211708 by Skyneless last updated on 17/Sep/24
Answered by Frix last updated on 18/Sep/24
∫tanxdx=[t=2tan−1tanx]=∫1−cost1+cos2tdt∫11+cos2tdt=[u=2tant2]=22∫duu2+1=2tan−1u2−∫cost1+cos2tdt=[v=2sint2]=22∫dvv2−1=−2tanh−1v2...whichisnicesomehow...
Answered by BHOOPENDRA last updated on 18/Sep/24
lettanx=t2sec2xdx=2tdt(1+t4)dx=2tdt⇒2t(1+t4)dt=dx=∫2t2(1+t4)dt=∫t2+11+t4dt+∫t2−11+t4dt=∫1+1t21t2+t2dt+∫1−1t21t2+t2dt(dividedbyt2)=∫1+1t2(t−1t)2+2dt+∫1−1t2(t+1t)2−2dtLet=t−1/t=p,t+1/t=q=1+1t2dt=dp,1−1t2dt=dq=∫1p2+2dp+∫1q2−2dq=12tan−1p2+122log(q−2q+2)+csubstitutingallthevaluesp=t−1t,q=t+1tt=tanx=12tan−1(tanx−12tanx)+122log(tanx−2tanx+1tanx+2tanx+1)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com