Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 211716 by liuxinnan last updated on 18/Sep/24

lim_(x→∞) (1+(1/(1×2))+(1/(1×2×3))+∙∙∙+(1/(1×2×3×∙∙∙×x)))=?

limx(1+11×2+11×2×3++11×2×3××x)=?

Answered by BHOOPENDRA last updated on 18/Sep/24

lim_(x→∞) (Σ_(n=0 ) ^x (1/(n!))−1)  x→∞ so   S=(Σ_(n=0) ^∞  (1/(n!))−1)  lim_(x→∞)  S_x =e−1 (Σ_(n=0) ^∞ (1/(n!))=e)

limx(xn=01n!1)xsoS=(n=01n!1)limxSx=e1(n=01n!=e)

Commented by liuxinnan last updated on 19/Sep/24

why Σ_(n=0) ^∞ (1/(n!))=e

whyn=01n!=e

Commented by TonyCWX08 last updated on 19/Sep/24

Using Maclaurin series,  f(x)=((f(0))/(0!))x^0 +((f′(0))/(1!))x^1 +((f′′(0))/(2!))x^2 +((f′′′(0))/(3!))x^3 +...+((f^n (0))/(n!))x^n     let f(x) = e^x   No matter how many times you differentiate it, it always will be e^x   Hence,   f^n (x)=e^x   f^n (0)=1    Substitute into the series,  e^x =(1/(0!))x^0 +(1/(1!))x^1 +(1/(2!))x^2 +(1/(3!))x^3 +...  let x =1  e=(1/(0!))+(1/(1!))+(1/(2!))+(1/(3!))...    Hence, e=Σ_(n=0) ^∞ ((1/(n!)))

UsingMaclaurinseries,f(x)=f(0)0!x0+f(0)1!x1+f(0)2!x2+f(0)3!x3+...+fn(0)n!xnletf(x)=exNomatterhowmanytimesyoudifferentiateit,italwayswillbeexHence,fn(x)=exfn(0)=1Substituteintotheseries,ex=10!x0+11!x1+12!x2+13!x3+...letx=1e=10!+11!+12!+13!...Hence,e=n=0(1n!)

Commented by TonyCWX08 last updated on 19/Sep/24

Hope you understand now, Liu Xin Nan

Hopeyouunderstandnow,LiuXinNan

Commented by liuxinnan last updated on 19/Sep/24

I get

Iget

Commented by BHOOPENDRA last updated on 19/Sep/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com