All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 211727 by Spillover last updated on 18/Sep/24
Answered by MrGaster last updated on 03/Nov/24
=∫−π4π4(π−4x)tanx(1+tanx)1−tan2xdx=∫−π4π4(π−4x)tanx+(π−4x)tan2xcos2xdx=∫−π4π4(π−4x)tanxsec2xdx+∫−π4π4(π−4x)tan2xsec2xdx=∫−π4π4(π−4x)tanxd(tanx)+∫−π4π4(π−4x)tan2xd(tanx)=[(π−4x)tan2x2]−π4π4−∫−π4π4(−4)tan2x2dx+[(π−4x)tan3x3]−π4π4−∫−π4π4(−4)tan3x3dx=[πtan2x2−2tan2x]−π4π4+[πtan3x3−4tan3x3]−π4π4=[π2−2]tan2π4−[π2−2]tan2−π4+[π3−43]tan3π4−[π3−43]tan3−π4=[π2−2]−[π2−2]+[π3−43]−[π3−43]=0+0=0
Commented by Spillover last updated on 03/Nov/24
great.thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com