Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 211750 by Alijumaaxyz last updated on 19/Sep/24

lim_(x→∞) (((a^(1/x) +b^(1/x) )/2))^x ;(a,b)∈R_+ ^∗

limx(a1/x+b1/x2)x;(a,b)R+

Answered by mehdee7396 last updated on 19/Sep/24

lim_(x→∞)  b(((((a/b))^(1/x) +1)/2))^x   ★ lim_(x→∞)  (((((a/b))^(1/x) +1)/2))^x   =lim_(x→∞)  (((((a/b))^(1/x) +1)/2)−1)x  =lim_(x→∞)  (((((a/b))^(1/x) −1)/2))x  =lim_(x→∞)  ((((a/b))^(1/x) −1)/(2/x))  =lim_(x→∞)  ((−(1/x^2 )((a/b))^(1/x) ln((a/b)))/(−(2/x^2 )))=(1/2)ln((a/b))  ⇒lim_(x→∞)  (((((a/b))^(1/x) +1)/2))^x =e^((1/2)ln((a/b))) =(√(a/b))  ⇒lim_(x→∞)  b(((((a/b))^(1/x) +1)/2))^x = (√(ab))  ✓

limxb((ab)1x+12)xlimx((ab)1x+12)x=limx((ab)1x+121)x=limx((ab)1x12)x=limx(ab)1x12x=limx1x2(ab)1xln(ab)2x2=12ln(ab)limx((ab)1x+12)x=e12ln(ab)=ablimxb((ab)1x+12)x=ab

Commented by Alijumaaxyz last updated on 19/Sep/24

✓ thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com