Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 211759 by liuxinnan last updated on 20/Sep/24

lim_(x→0) ((e^(sin x) −e^x )/(sin x−x))=?

limx0esinxexsinxx=?

Commented by liuxinnan last updated on 20/Sep/24

Answered by TonyCWX08 last updated on 20/Sep/24

It′s 1

Its1

Answered by TonyCWX08 last updated on 20/Sep/24

Using L′Hopital rule  Find the derivative for the numerator and denominator:  (d/dx)(e^(sin(x)) −e^x )=cos(x)e^(sin(x)) −e^x   (d/dx)(sin x − x )=cos (x)−1    The limit now transform to  lim_(x→0) (((cos(x)e^(sin(x)) −e^x )/(cos (x)−1)))  lim_(x→0) (((cos(x)e^(sin(x)) −e^x )/(cos (x)−1)))    But it′s still not defined, so we apply the rule again.  (d/dx)(cos(x)e^(sin(x)) −e^x )=−sin(x)e^(sin(x)) +cos^2 (x)e^(sin(x)) −e^x   (d/dx)(cos(x)−1)=−sin(x)    The limit now transform to  lim_(x→0) (((−sin(x)e^(sin(x)) +cos^2 (x)e^(sin(x)) −e^x )/(−sin(x))))  =lim_(x→0) (((sin(x)e^(sin(x)) −cos^2 (x)e^(sin(x)) +e^x )/(sin(x))))    Still undefined, apply rule again  (d/dx)(sin(x)e^(sin(x)) −cos^2 (x)e^(sin(x)) +e^x )=−e^(sin(x)) cos(x)sin^2 (x)−e^(sin(x)) sin(2x)−e^(sin(x)) cos(x)sin(x)−e^x   (d/dx)(sin(x))=cos(x)    The limit now transform to  lim_(x→0) (((−e^(sin(x)) cos(x)sin^2 (x)−e^(sin(x)) sin(2x)−e^(sin(x)) cos(x)sin(x)−e^x )/(cos(x)))  Finally, substitute x=0  The limit is 1

UsingLHopitalruleFindthederivativeforthenumeratoranddenominator:ddx(esin(x)ex)=cos(x)esin(x)exddx(sinxx)=cos(x)1Thelimitnowtransformtolimx0(cos(x)esin(x)excos(x)1)limx0(cos(x)esin(x)excos(x)1)Butitsstillnotdefined,soweapplytheruleagain.ddx(cos(x)esin(x)ex)=sin(x)esin(x)+cos2(x)esin(x)exddx(cos(x)1)=sin(x)Thelimitnowtransformtolimx0(sin(x)esin(x)+cos2(x)esin(x)exsin(x))=limx0(sin(x)esin(x)cos2(x)esin(x)+exsin(x))Stillundefined,applyruleagainddx(sin(x)esin(x)cos2(x)esin(x)+ex)=esin(x)cos(x)sin2(x)esin(x)sin(2x)esin(x)cos(x)sin(x)exddx(sin(x))=cos(x)Thelimitnowtransformtolimx0(esin(x)cos(x)sin2(x)esin(x)sin(2x)esin(x)cos(x)sin(x)excos(x)Finally,substitutex=0Thelimitis1

Answered by BHOOPENDRA last updated on 20/Sep/24

As we know  lim_(x→0)  ((e^x −1)/(x ))=1  so from there   lim_(x→0)  e^x     lim_(x→0)  (((e^(sinx−x) −1)/(sinx−x)))     ⇒ e^0  ×1  =1

Asweknowlimx0ex1x=1sofromtherelimx0exlimx0(esinxx1sinxx)e0×1=1

Answered by mehdee7396 last updated on 20/Sep/24

e^(sinx) =1+x+(x^2 /2)+O(x^4 )  e^x =1+x+(x^2 /2)+(x^3 /(3!))+O(x^4 )  ⇒lim_(x→0)  ((e^(sinx) −e^x )/(sinx−x))=lim_(x→0)  ((−(1/6)x^3 )/(((−1)/6)x^3 )) =1 ✓

esinx=1+x+x22+O(x4)ex=1+x+x22+x33!+O(x4)limx0esinxexsinxx=limx016x316x3=1

Commented by liuxinnan last updated on 20/Sep/24

Thanks everyone.It helps me a lot.

Thankseveryone.Ithelpsmealot.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com