All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 211886 by Spillover last updated on 23/Sep/24
Answered by Ghisom last updated on 23/Sep/24
∫cos2x+cosxdx=∫2cosxcosx2dx=[t=2sinx2cosx⇔x=2arctantt2+2→dx=2cos3xcosx2dt]=2∫dt(t2+1)2=tt2+1+arctant==2cosxsinx2+arctan2sinx2cosx+C
Answered by Spillover last updated on 23/Sep/24
cos2x+cosxdxLetcosx=sin2tdx=−2sintcostsinxdt=−2sintcost1−cos2tdt2sintcost1−cos2t=−2sintcost1−sin4tdt=−2sintcost(1−sin2t)(1+psin2t)dtdx=−2sintcost(1−sin2t)(1+sin2t)dt∫cos2x+cosxdx=∫sin4t+sin2tdx=∫(sin4t+sin2t×−2sintcost(1−sin2t)(1+sin2t)dt)−2∫sin2tdt=−2(−sintcost+t2)sintcost−tcosx(1−cosx)−sin−1cosx+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com