Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211908 by Spillover last updated on 23/Sep/24

Answered by BHOOPENDRA last updated on 24/Sep/24

I=∫_0 ^(√3) (Σ_(k=0) ^∞ sin (((kπ)/2))x^k )dx  The pattern for sin (kπ/2)  for k=0  sin (((kπ)/2))=sin (0)=0  For k=1  sin (1×(π/2))=sin (π/2)=1  For k=2  sin (2×(π/2))=sin (π)=0  For k=3  sin (((3π)/2))=−1, For k=4  sin(((4π)/2))=0  For k=5   sin (((5π)/2))=1  S(x)=(x−x^3 +x^5 −x^7 +x^9 +..........)         S(x)=Σ_(k=0) ^∞  sin(((kπ)/2))x^(k ) =(x/((1+x^2 )))  I=∫_0 ^(√3) S(x)dx    =∫_0 ^(√3)  (x/(1+x^2 )) dx    [ln(1+x^2 )/2]_0 ^(√3)   =((ln(4))/2)= ln2

I=03(k=0sin(kπ2)xk)dxThepatternforsin(kπ/2)fork=0sin(kπ2)=sin(0)=0Fork=1sin(1×π2)=sin(π/2)=1Fork=2sin(2×π2)=sin(π)=0Fork=3sin(3π2)=1,Fork=4sin(4π2)=0Fork=5sin(5π2)=1S(x)=(xx3+x5x7+x9+..........)S(x)=k=0sin(kπ2)xk=x(1+x2)I=03S(x)dx=03x1+x2dx[ln(1+x2)/2]03=ln(4)2=ln2

Commented by Spillover last updated on 24/Sep/24

good.thanks

good.thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com