Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211919 by Spillover last updated on 24/Sep/24

Answered by Frix last updated on 24/Sep/24

x^(1+(3/2)+(4/4)+(5/8)+(6/(16))...) =x^5   1+Σ_(k=1) ^∞  ((k+2)/2^k ) =1+2Σ_(k=1) ^∞  (1/2^k ) +Σ_(k=1) ^∞  (k/2^k )   2Σ_(k=1) ^∞  (1/2^k ) =2×1  Σ_(k=1) ^∞  (k/2^k ) =lim_(k→∞)  (2−((k+2)/2^k )) =2

x1+32+44+58+616...=x51+k=1k+22k=1+2k=112k+k=1k2k2k=112k=2×1k=1k2k=limk(2k+22k)=2

Commented by Spillover last updated on 24/Sep/24

i got 1

igot1

Commented by Frix last updated on 24/Sep/24

I misread x(√(x^2 (√(x^3 (√(x^4 ...))))))  x((x((x((x...))^(1/4) ))^(1/3) ))^(1/2) =x^(1+(1/2)+(1/6)+(1/(24))+...) =x^(e−1)   ∫_0 ^1 x^(e−1) dx=[(x^e /e)]_0 ^1 =(1/e)

Imisreadxx2x3x4...xxxx...432=x1+12+16+124+...=xe110xe1dx=[xee]01=1e

Answered by Spillover last updated on 25/Sep/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com