Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211946 by BaliramKumar last updated on 25/Sep/24

Answered by BHOOPENDRA last updated on 25/Sep/24

(2+3+4)^2 =9^2 =81

(2+3+4)2=92=81

Commented by BHOOPENDRA last updated on 25/Sep/24

method(II)  from Couchy schwarz inequality   ((4/x)+(9/y)+((16)/z))(x+y+z)≥ (2+3+4)^2   =81  ((4/x)+(9/y)+((16)/z))≥81

method(II)fromCouchyschwarzinequality(4x+9y+16z)(x+y+z)(2+3+4)2=81(4x+9y+16z)81

Answered by BHOOPENDRA last updated on 25/Sep/24

there are many method to find minimum  value of that  f(x,y,z)=x+y+z =1  (1)  g(x,y,z)=(4/x)+(9/y)+((16)/z)  ▽f(x,y,z)= λ▽g(x,y,z)  ▽f=(1,1,1)  ▽g=(−(4/x^2 ) ,((−9)/y^2 ) ,((−16)/z^2 ))  (1,1,1)=(((−4λ)/x^2 ), ((−9λ)/y^2 ),((−16λ)/z^2 ))  compare  1=((−4λ)/x^2 ), x^2 =−4λ ,let (−λ)=p  x=2(√(p )) ,similarly  y=3(√p) ,z=4(√p)   put the value  x+y+z=1  2(√p) +3(√p) +4(√p) =1  (√p) =(1/9)  p=(1/(81))    (4/(2×1/9))+(9/(3×1/9))+((16)/(4×1/9))  =18+27+36=81

therearemanymethodtofindminimumvalueofthatf(x,y,z)=x+y+z=1(1)g(x,y,z)=4x+9y+16zf(x,y,z)=λg(x,y,z)f=(1,1,1)g=(4x2,9y2,16z2)(1,1,1)=(4λx2,9λy2,16λz2)compare1=4λx2,x2=4λ,let(λ)=px=2p,similarlyy=3p,z=4pputthevaluex+y+z=12p+3p+4p=1p=19p=18142×1/9+93×1/9+164×1/9=18+27+36=81

Terms of Service

Privacy Policy

Contact: info@tinkutara.com