Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 211989 by Spillover last updated on 26/Sep/24

Answered by som(math1967) last updated on 26/Sep/24

 cosαcosβ+sinαsinβ+cosβcosγ  +sinβsinγ+cosγcosα+sinγsinα  =−(3/2)  2(cosαcosβ+cosβcosγ+cosγcosα)  +2(sinαsinβ+sinβsinγ+sinαsinγ)  =−1−1−1   cos^2 α+cos^2 β+cos^2 γ  +2(cosαcosβ+cosβcosγ+cosγcosα)  +sin^2 α+sin^2 β+sin^2 γ  +2(sinαsinβ+sinβsinγ+sinαsinγ)=0  (cosα+cosβ+cosγ)^2 +(sinα+sinβ+sinγ)^2   =0  ∴cosα+cosβ+cosγ=sinα+sinβ+sinγ)=0

cosαcosβ+sinαsinβ+cosβcosγ+sinβsinγ+cosγcosα+sinγsinα=322(cosαcosβ+cosβcosγ+cosγcosα)+2(sinαsinβ+sinβsinγ+sinαsinγ)=111cos2α+cos2β+cos2γ+2(cosαcosβ+cosβcosγ+cosγcosα)+sin2α+sin2β+sin2γ+2(sinαsinβ+sinβsinγ+sinαsinγ)=0(cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ)2=0cosα+cosβ+cosγ=sinα+sinβ+sinγ)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com