Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113706 by Rasikh last updated on 15/Sep/20

   ∫(√(tanx)) dx =?

tanxdx=?

Answered by MJS_new last updated on 15/Sep/20

∫(√(tan x)) dx=       [t=(√(tan x)) → dx=2cos^2  x (√(tan x)) dt]  =2∫(t^2 /(t^4 +1))dt=((√2)/2)∫((t/(t^2 −(√2)t+1))−(t/(t^2 +(√2)t+1)))dt=  =((√2)/4)ln ((t^2 −(√2)t+1)/(t^2 +(√2)t+1)) +((√2)/2)(arctan ((√2)t−1) +arctan ((√2)t+1))  with t=(√(tan x))

tanxdx=[t=tanxdx=2cos2xtanxdt]=2t2t4+1dt=22(tt22t+1tt2+2t+1)dt==24lnt22t+1t2+2t+1+22(arctan(2t1)+arctan(2t+1))witht=tanx

Commented by malwan last updated on 16/Sep/20

fantastic   remember  ∫(( dx)/(ax^2  + bx + c)) =   { (((1/( (√(b^2 −4ac))))ln((2ax+b−(√(b^2 −4ac)))/(2ax+b+(√(b^2 −4ax)))) (b^2 >4ac))),(((2/( (√(4ac−b^2 ))))tan^(−1) (((2ax+b)/( (√(4ac−b^2 ))))) (b^2 <4ac))) :}      −(2/(2ax+b))   (b^2  = 4ac)

fantasticrememberdxax2+bx+c={1b24acln2ax+bb24ac2ax+b+b24ax(b2>4ac)24acb2tan1(2ax+b4acb2)(b2<4ac)22ax+b(b2=4ac)

Answered by mathdave last updated on 15/Sep/20

solution  let t=(√(tanx)) ,t^2 =tanx,dx=((2t)/(1+t^4 ))dt  I=∫(√(tanx))=∫t×((2t)/(1+t^4 ))dt=∫((2t^2 )/(1+t^4 ))dt  but 2t^2 =(t^2 −1)+(1+t^2 )  I=∫((t^2 −1)/(1+t^4 ))dt+∫((t^2 +1)/(1+t^4 ))dt=A+B  let A=∫((t^2 −1)/(1+t^4 ))dt=∫((1−1/t^2 )/(t^2 +1/t^2 ))dt  let t+1/t=p.......(x)  (dp/dt)=1−1/t^2  ,dp=(1−1/t^2 )dt....(1)  and  from  (x)  (t+1/t)^2 =p^2 ,    t^2 +1/t^2 =p^2 −((√2))^2 .......(2)  ∵A=∫(dp/(p^2 −((√2))^2 ))  but ∫(dz/(z^2 −a^2 ))=(1/(2a))ln[((z−a)/(z+a))]  A=∫(dp/(p^2 −((√2))^2 ))=(1/(2(√2)))ln[((p−(√2))/(p+(√2)))]=(1/(2(√2)))ln[((t+1/t−(√2))/(t+1/t+(√2)))]  ∵∫((t^2 −1)/(1+t^4 ))dt=(1/(2(√2)))ln[((t^2 −t(√2)+1)/(t^2 +t(√2)+1))]........xx  and B=∫((t^2 +1)/(1+t^4 ))dt=∫((1+1/t^2 )/(t^2 +1/t^2 ))dt  let t−1/t=p,dp=(1+1/t^2 )dt....(1) and   (t−1/t)^2 =p^2 ,t^2 +1/t^2 =p^2 +((√2))^2 .....(2)  ∫((1+1/t^2 )/(t^2 +1/t^2 ))dt=∫(dp/(p^2 +((√2))^2 ))  but ∫(dz/(z^2 +a^2 ))=(1/a)tan^(−1) [(p/(√2))]  ∫((t^2 +1)/(1+t^4 ))dt=(1/(√2))tan^(−1) [((t^2 −1)/(t(√2)))]......xxx  ∵∫(√(tanx))dx=(1/(2(√2)))ln[((t^2 −(√2)t+1)/(t^2 +(√2)t+1))]+(1/(√2))tan^(−1) [((t^2 −1)/((√2)t))]  ∫(√(tanx))dx=((√2)/4)ln[((tanx−(√(2tanx))+1)/(tanx+(√(2tanx))+1))]+((√2)/2)tan^(−1) [((tanx−1)/(√(2tanx)))]+k  mathdave

solutionlett=tanx,t2=tanx,dx=2t1+t4dtI=tanx=t×2t1+t4dt=2t21+t4dtbut2t2=(t21)+(1+t2)I=t211+t4dt+t2+11+t4dt=A+BletA=t211+t4dt=11/t2t2+1/t2dtlett+1/t=p.......(x)dpdt=11/t2,dp=(11/t2)dt....(1)andfrom(x)(t+1/t)2=p2,t2+1/t2=p2(2)2.......(2)A=dpp2(2)2butdzz2a2=12aln[zaz+a]A=dpp2(2)2=122ln[p2p+2]=122ln[t+1/t2t+1/t+2]t211+t4dt=122ln[t2t2+1t2+t2+1]........xxandB=t2+11+t4dt=1+1/t2t2+1/t2dtlett1/t=p,dp=(1+1/t2)dt....(1)and(t1/t)2=p2,t2+1/t2=p2+(2)2.....(2)1+1/t2t2+1/t2dt=dpp2+(2)2butdzz2+a2=1atan1[p2]t2+11+t4dt=12tan1[t21t2]......xxxtanxdx=122ln[t22t+1t2+2t+1]+12tan1[t212t]tanxdx=24ln[tanx2tanx+1tanx+2tanx+1]+22tan1[tanx12tanx]+kmathdave

Commented by mathdave last updated on 15/Sep/20

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by mathmax by abdo last updated on 14/Sep/20

I =∫(√(tanx))dx changement (√(tanx))=t give x=arctan(t^2 ) ⇒  I =∫ ((t.(2t))/(1+t^4 )) dt =2 ∫  (t^2 /(1+t^4 )) dt =2 ∫  (1/((1/t^2 )+t^2 )) dt  =∫ ((1−(1/t^2 )+1+(1/t^2 ))/((1/t^2 )+t^2 )) dt =∫  ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt(→ t+(1/t)=u)+∫ ((1+(1/t^2 ))/((t−(1/t))^2  +2))dt(→t−(1/t)=v)  =∫ (du/(u^2 −2)) +∫ (dv/(v^2  +2))  we have ∫ (du/(u^2 −2)) =(1/(2(√2)))∫((1/(u−(√2)))−(1/(u+(√2))))du  =(1/(2(√2)))ln∣((u−(√2))/(u+(√2)))∣ +c_1 =(1/(2(√2)))ln∣((t+(1/t)−(√2))/(t+(1/t)+(√2)))∣ +c_1 =(1/(2(√2)))ln∣((t^2 −(√2)t+1)/(t^2  +(√2)t +1))∣ +c_1   ∫ (dv/(v^2  +2)) =_(v =(√2)α)    ∫  (((√2)dα)/(2(1+α^2 ))) =(1/(√2)) arctan(α)+c2  =(1/(√2)) arctan((1/(√2))(t−(1/t)))+c_2  ⇒  I =(1/(2(√2)))ln∣((t^2 −(√2)t +1)/(t^2 +(√2)t+1))∣ +(1/(√2)) arctan(((t^2 −1)/(t(√2)))) +C  but t=(√(tanx)) ⇒  I =(1/(2(√2)))ln∣((tanx−(√(2tanx))+1)/(tanx +(√(2tanx)) +1))∣ +(1/(√2)) arctan(((tanx−1)/(√(2tanx)))) +C

I=tanxdxchangementtanx=tgivex=arctan(t2)I=t.(2t)1+t4dt=2t21+t4dt=211t2+t2dt=11t2+1+1t21t2+t2dt=11t2(t+1t)22dt(t+1t=u)+1+1t2(t1t)2+2dt(t1t=v)=duu22+dvv2+2wehaveduu22=122(1u21u+2)du=122lnu2u+2+c1=122lnt+1t2t+1t+2+c1=122lnt22t+1t2+2t+1+c1dvv2+2=v=2α2dα2(1+α2)=12arctan(α)+c2=12arctan(12(t1t))+c2I=122lnt22t+1t2+2t+1+12arctan(t21t2)+Cbutt=tanxI=122lntanx2tanx+1tanx+2tanx+1+12arctan(tanx12tanx)+C

Answered by john santu last updated on 15/Sep/20

∫ (√(tan x)) dx = ∫ (((√(tan x))+(√(cot x)))/2) dx+∫(((√(tan x))−(√(cot x)))/2) dx  = (1/2)∫ ((√(sin x))/( (√(cos x))))+((√(cos x))/( (√(sin x)))) dx+(1/2)∫((√(sin x))/( (√(cos x))))−((√(cos x))/( (√(sin x)))) dx  = (1/2)∫((sin x+cos x)/( (√(sin 2x))))dx+(1/2)∫((sin x−cos x)/( (√(sin 2x))))dx  = (1/( (√2)))∫ ((sin x+cos x)/( (√(1−(sin x−cos x)^2 ))))dx+(1/( (√2)))∫((sin x−cos x)/( (√((sin x+cos x)^2 −1))))dx  = (1/( (√2))) ∫ (dt/( (√(1−t^2 ))))−(1/( (√2)))∫(du/( (√(u^2 −1))))  = (1/( (√2)))sin^(−1) (t)−(1/( (√2)))ln (u+(√(u^2 −1)))+c  = (1/( (√2))) sin^(−1) (sin x−cos x)−(1/( (√2)))ln (sin x+cos x+(√(sin 2x)))+c  [ note t = sin x−cos x , u=sin x+cos x ]

tanxdx=tanx+cotx2dx+tanxcotx2dx=12sinxcosx+cosxsinxdx+12sinxcosxcosxsinxdx=12sinx+cosxsin2xdx+12sinxcosxsin2xdx=12sinx+cosx1(sinxcosx)2dx+12sinxcosx(sinx+cosx)21dx=12dt1t212duu21=12sin1(t)12ln(u+u21)+c=12sin1(sinxcosx)12ln(sinx+cosx+sin2x)+c[notet=sinxcosx,u=sinx+cosx]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com