Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 212307 by MrGaster last updated on 09/Oct/24

    I=∫_0 ^∞ (((x−arctan x)^2 )/x^4 )dx.

I=0(xarctanx)2x4dx.

Answered by Ghisom last updated on 09/Oct/24

∫ (((x−arctan x)^2 )/x^4 )dx=A+B+C  A=∫ (dx/x^2 )=−(1/x)  B=−2∫ ((arctan x)/x^3 )dx=       [by parts]  =(1/x)+((x^2 +1)/x^2 )arctan x  A+B=((x^2 +1)/x^2 )arctan x  C=∫ ((arctan^2  x)/x^4 )dx=       [t=arctan x]  =∫ ((t^2 cos^2  t)/(sin^4  t))dt=       [by parts]  =D+E  D=−(t^2 /(3tan^3  t))=−((arctan^2  x)/(3x^3 ))  E=(2/3)∫(t/(tan^3  t))dt=       [by parts]  =F+G  F=−(t/(3tan^2  t))−((2t)/3)ln sin t  F=((arctan x)/3)(ln (x^2 +1) −2ln ∣x∣ −(1/x^2 ))  G=H+J  H=(1/3)∫(dt/(tan^2  t))=−(1/3)(t+(1/(tan t)))  H=−(1/3)((1/x)+arctan x)  all above x∈[0, ∞)  J=(2/3)∫_0 ^(π/2) ln sin t dt=−((πln 2)/3)       [this is easy ;−)]  I get  I=(π/3)(1−ln 2)

(xarctanx)2x4dx=A+B+CA=dxx2=1xB=2arctanxx3dx=[byparts]=1x+x2+1x2arctanxA+B=x2+1x2arctanxC=arctan2xx4dx=[t=arctanx]=t2cos2tsin4tdt=[byparts]=D+ED=t23tan3t=arctan2x3x3E=23ttan3tdt=[byparts]=F+GF=t3tan2t2t3lnsintF=arctanx3(ln(x2+1)2lnx1x2)G=H+JH=13dttan2t=13(t+1tant)H=13(1x+arctanx)allabovex[0,)J=23π/20lnsintdt=πln23[thisiseasy;)]IgetI=π3(1ln2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com