All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 212307 by MrGaster last updated on 09/Oct/24
I=∫0∞(x−arctanx)2x4dx.
Answered by Ghisom last updated on 09/Oct/24
∫(x−arctanx)2x4dx=A+B+CA=∫dxx2=−1xB=−2∫arctanxx3dx=[byparts]=1x+x2+1x2arctanxA+B=x2+1x2arctanxC=∫arctan2xx4dx=[t=arctanx]=∫t2cos2tsin4tdt=[byparts]=D+ED=−t23tan3t=−arctan2x3x3E=23∫ttan3tdt=[byparts]=F+GF=−t3tan2t−2t3lnsintF=arctanx3(ln(x2+1)−2ln∣x∣−1x2)G=H+JH=13∫dttan2t=−13(t+1tant)H=−13(1x+arctanx)allabovex∈[0,∞)J=23∫π/20lnsintdt=−πln23[thisiseasy;−)]IgetI=π3(1−ln2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com