All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 212347 by Ismoiljon_008 last updated on 10/Oct/24
Commented by Ismoiljon_008 last updated on 10/Oct/24
Helpme,please.
Answered by Ar Brandon last updated on 10/Oct/24
I=∫0π2(sinx−cosxsinx−cosx)4dx=∫0π2(sinx−cosx(sinx−cosx)(sinx+cosx))4dx=∫0π2(1sinx+cosx)4dx=∫0π2(secxtanx+1)4dx=∫0π2sec2x(tanx+1)4dx=t=tanx∫0∞dt(t+1)4=t=u22∫0∞u(u+1)4du=−[2u3(u+1)3]0∞+23∫0∞du(u+1)3=−[13(u+1)2]0∞=13
Answered by Ghisom last updated on 10/Oct/24
∫π/20(sinx−cosxsinx−cosx)4dx=[t=1+tanx]=2∫∞1(1t3−1t4)dt=[23t3−1t2]1∞=13
Terms of Service
Privacy Policy
Contact: info@tinkutara.com