Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 212347 by Ismoiljon_008 last updated on 10/Oct/24

Commented by Ismoiljon_008 last updated on 10/Oct/24

     Help me, please .

Helpme,please.

Answered by Ar Brandon last updated on 10/Oct/24

I=∫_0 ^(π/2) ((((√(sinx))−(√(cosx)))/(sinx−cosx)))^4 dx    =∫_0 ^(π/2) ((((√(sinx))−(√(cosx)))/(((√(sinx))−(√(cosx)))((√(sinx))+(√(cosx))))))^4 dx    =∫_0 ^(π/2) ((1/( (√(sinx))+(√(cosx)))))^4 dx=∫_0 ^(π/2) (((√(secx))/( (√(tanx))+1)))^4 dx    =∫_0 ^(π/2) ((sec^2 x)/( ((√(tanx))+1)^4 ))dx=^(t=tanx) ∫_0 ^∞ (dt/(((√t)+1)^4 ))=^(t=u^2 ) 2∫_0 ^∞ (u/((u+1)^4 ))du    =−[((2u)/(3(u+1)^3 ))]_0 ^∞ +(2/3)∫_0 ^∞ (du/((u+1)^3 ))=−[(1/(3(u+1)^2 ))]_0 ^∞ =(1/3)

I=0π2(sinxcosxsinxcosx)4dx=0π2(sinxcosx(sinxcosx)(sinx+cosx))4dx=0π2(1sinx+cosx)4dx=0π2(secxtanx+1)4dx=0π2sec2x(tanx+1)4dx=t=tanx0dt(t+1)4=t=u220u(u+1)4du=[2u3(u+1)3]0+230du(u+1)3=[13(u+1)2]0=13

Answered by Ghisom last updated on 10/Oct/24

∫_0 ^(π/2) ((((√(sin x))−(√(cos x)))/(sin x −cos x)))^4 dx=       [t=1+(√(tan x))]  =2∫_1 ^∞ ((1/t^3 )−(1/t^4 ))dt=[(2/(3t^3 ))−(1/t^2 )]_1 ^∞ =(1/3)

π/20(sinxcosxsinxcosx)4dx=[t=1+tanx]=21(1t31t4)dt=[23t31t2]1=13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com