Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21235 by Tinkutara last updated on 17/Sep/17

For any integer k, let α_k  = cos (((kπ)/7)) +  i sin (((kπ)/7)), where i = (√(−1)). The value of  the expression ((Σ_(k=1) ^(12) ∣α_(k+1)  − α_k ∣)/(Σ_(k=1) ^3 ∣α_(4k−1)  − α_(4k−2) ∣)) is

$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{k},\:\mathrm{let}\:\alpha_{{k}} \:=\:\mathrm{cos}\:\left(\frac{{k}\pi}{\mathrm{7}}\right)\:+ \\ $$$${i}\:\mathrm{sin}\:\left(\frac{{k}\pi}{\mathrm{7}}\right),\:\mathrm{where}\:{i}\:=\:\sqrt{−\mathrm{1}}.\:\mathrm{The}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{expression}\:\frac{\underset{{k}=\mathrm{1}} {\overset{\mathrm{12}} {\sum}}\mid\alpha_{{k}+\mathrm{1}} \:−\:\alpha_{{k}} \mid}{\underset{{k}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\mid\alpha_{\mathrm{4}{k}−\mathrm{1}} \:−\:\alpha_{\mathrm{4}{k}−\mathrm{2}} \mid}\:\mathrm{is} \\ $$

Answered by sma3l2996 last updated on 17/Sep/17

α_k =e^(i((kπ)/7)) ; α_(k+1) =e^(i(k+1)(π/7))   α_(k+1) −α_k =e^(ik(π/7)) (e^(i(π/7)) −1)  ∣α_(k+1) −α_k ∣=∣e^(ik(π/7)) ∣.∣e^(i(π/7)) −1∣=∣e^(i(π/7)) −1∣  α_(4k−1) =e^(−i(π/7)) .e^(i4k(π/7))    ;  α_(4k−2) =e^(−2i(π/7)) .e^(4ik(π/7))   α_(4k−1) −α_(4k−2) =e^(4ik(π/7)) (e^(−i(π/7)) −e^(−2i(π/7)) )=e^(i(4k−2)(π/7)) (e^(i(π/7)) −1)  so  ∣α_(4k−1) −α_(4k−2) ∣=∣e^(i(4k−2)(π/7)) ∣.∣e^(i(π/7)) −1∣=∣e^(i(π/7)) −1∣  so  : ((Σ_(k=1) ^(12) ∣α_(k+1) −α_k ∣)/(Σ_(k=1) ^3 ∣α_(4k−1) −α_(4k−2) ∣))=((12∣e^(i(π/7)) −1∣)/(3∣e^(i(π/7)) −1∣))=4

$$\alpha_{{k}} ={e}^{{i}\frac{{k}\pi}{\mathrm{7}}} ;\:\alpha_{{k}+\mathrm{1}} ={e}^{{i}\left({k}+\mathrm{1}\right)\frac{\pi}{\mathrm{7}}} \\ $$$$\alpha_{{k}+\mathrm{1}} −\alpha_{{k}} ={e}^{{ik}\frac{\pi}{\mathrm{7}}} \left({e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\right) \\ $$$$\mid\alpha_{{k}+\mathrm{1}} −\alpha_{{k}} \mid=\mid{e}^{{ik}\frac{\pi}{\mathrm{7}}} \mid.\mid{e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\mid=\mid{e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\mid \\ $$$$\alpha_{\mathrm{4}{k}−\mathrm{1}} ={e}^{−{i}\frac{\pi}{\mathrm{7}}} .{e}^{{i}\mathrm{4}{k}\frac{\pi}{\mathrm{7}}} \:\:\:;\:\:\alpha_{\mathrm{4}{k}−\mathrm{2}} ={e}^{−\mathrm{2}{i}\frac{\pi}{\mathrm{7}}} .{e}^{\mathrm{4}{ik}\frac{\pi}{\mathrm{7}}} \\ $$$$\alpha_{\mathrm{4}{k}−\mathrm{1}} −\alpha_{\mathrm{4}{k}−\mathrm{2}} ={e}^{\mathrm{4}{ik}\frac{\pi}{\mathrm{7}}} \left({e}^{−{i}\frac{\pi}{\mathrm{7}}} −{e}^{−\mathrm{2}{i}\frac{\pi}{\mathrm{7}}} \right)={e}^{{i}\left(\mathrm{4}{k}−\mathrm{2}\right)\frac{\pi}{\mathrm{7}}} \left({e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\right) \\ $$$${so}\:\:\mid\alpha_{\mathrm{4}{k}−\mathrm{1}} −\alpha_{\mathrm{4}{k}−\mathrm{2}} \mid=\mid{e}^{{i}\left(\mathrm{4}{k}−\mathrm{2}\right)\frac{\pi}{\mathrm{7}}} \mid.\mid{e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\mid=\mid{e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\mid \\ $$$${so}\:\::\:\frac{\underset{{k}=\mathrm{1}} {\overset{\mathrm{12}} {\sum}}\mid\alpha_{{k}+\mathrm{1}} −\alpha_{{k}} \mid}{\underset{{k}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\mid\alpha_{\mathrm{4}{k}−\mathrm{1}} −\alpha_{\mathrm{4}{k}−\mathrm{2}} \mid}=\frac{\mathrm{12}\mid{e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\mid}{\mathrm{3}\mid{e}^{{i}\frac{\pi}{\mathrm{7}}} −\mathrm{1}\mid}=\mathrm{4} \\ $$

Commented by Tinkutara last updated on 17/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com