Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 212354 by RojaTaniya last updated on 11/Oct/24

  ax^2 +bx+c=0   a,b,c and two roots of the eqn.   are 5 consecutive integers in    some order. Find their values.

ax2+bx+c=0a,b,candtworootsoftheeqn.are5consecutiveintegersinsomeorder.Findtheirvalues.

Answered by Rasheed.Sindhi last updated on 12/Oct/24

A Try...  •let α & β are roots of ax^2 +bx+c=0  •a,b,c ,α,β ∈ Z  •α+β=((−b)/a) ∈ Z , αβ=(c/a) ∈ Z      ⇒a divides b & c  •let b=ma , c=na  α,β=((−ma±(√(m^2 a^2 −4a(na))))/(2a))          =((−m±(√(m^2 −4n)))/2)      m^2 −4n is perfect square      and       ((−m±(√(m^2 −4n)))/2) ∈ Z  m^2 −4n is perfect square  m^2 =0,1,4,9,...  m^2 =0⇒n=0,−1,−4,  m^2 =1⇒n=0,−2,  m^2 =4⇒n=0,1,−3,   determinant ((m,n,(m^2 −4n),( ((−m±(√(m^2 −4n)))/2))),((    0),(0,−1,−4,...),(0,4,16,...),),((    1),(0,−2,),,),((−1),(0,−2),,),((    2),(0,1,−3,),,),((−2),(0,1,−3,),,))

ATry...letα&βarerootsofax2+bx+c=0a,b,c,α,βZα+β=baZ,αβ=caZadividesb&cletb=ma,c=naα,β=ma±m2a24a(na)2a=m±m24n2m24nisperfectsquareandm±m24n2Zm24nisperfectsquarem2=0,1,4,9,...m2=0n=0,1,4,m2=1n=0,2,m2=4n=0,1,3,mnm24nm±m24n200,1,4,...0,4,16,...10,2,10,220,1,3,20,1,3,

Commented by Frix last updated on 12/Oct/24

This narrows the possibilities:  Let L={a, b, c, x_1 , x_2 }  1≤max L −min L ≤4  I think there′s only one solution...

Thisnarrowsthepossibilities:LetL={a,b,c,x1,x2}1maxLminL4Ithinktheresonlyonesolution...

Commented by Rasheed.Sindhi last updated on 13/Oct/24

Thanks sir!

Thankssir!

Answered by Frix last updated on 12/Oct/24

a(x−p)(x−q)=0  ax^2 −a(p+q)x+apq=0  a, p, q, −a(p+q), apq are distinct⇒  a≠0∧p≠0∧q≠0    Let q=p+k; k∈{1, 2, 3, 4}; p+k≠0  ax^2 −a(2p+k)x+ap(p+k)=0    LetL_k ={a, p, p+k, −a(2p+k), ap(p+k)}    ∣a+a(2p+k)∣=∣a(2p+k+1)∣≤4  ∣a−ap(p+k)∣=∣a(p^2 +pk−1)∣≤4  ⇒ ∣a∣≤4∧∣2p+k+1∣≤4∧∣p^2 +pk−1∣≤4    ∣a∣≤4 ⇒ a=±1, ±2, ±3, ±4  ∣2p+k+1∣≤4∧∣p^2 +pk−1∣≤4 ⇒            [remember p≠0∧p+k≠0]       k=1 ⇒ p=−2, 1       k=2 ⇒ p=−3, −1       k=3 ⇒ p=−4, −2, −1       k=4 ⇒ p=−3, −1    L_1 ={a, p, p+1, −a(2p+1), ap(p+1)}       p=−2       L_1 ={a, −2, −1, 3a, 2a} impossible       p=1       L_1 ={a, 1, 2, −3a, 2a} impossible  L_2 ={a, p, p+2, −2a(p+1), ap(p+2)}       p=−3       L_2 ={a, −3, −1, 4a, 3a} impossible       p=−1       L_2 ={a, −1, 1, 0, −a} a=±2 ★  L_3 ={a, p, p+3, −a(2p+3), ap(p+3)}       p=−4       L_3 ={a, −4, −1, 5a, 4a} impossible       p=−2       L_3 ={a, −2, 1, a, −2a} impossible       p=−1       L_3 ={a, −1, 2, −a, −2a} impossible  L_4 ={a, p, p+4, −2a(p+2), ap(p+4)}       p=−3       L_4 ={a, −3, 1, 2a, −3a} impossible       p=−1       L_4 ={a, −1, 3, −2a, −3a} impossible    ★  We get 2 solutions  1. a=−2∧b=0∧c=2∧p=−1∧q=1  −2x^2 +2=0  2. a=2∧b=0∧c=−2∧p=−1∧q=1  2x^2 −2=0

a(xp)(xq)=0ax2a(p+q)x+apq=0a,p,q,a(p+q),apqaredistincta0p0q0Letq=p+k;k{1,2,3,4};p+k0ax2a(2p+k)x+ap(p+k)=0LetLk={a,p,p+k,a(2p+k),ap(p+k)}a+a(2p+k)∣=∣a(2p+k+1)∣⩽4aap(p+k)∣=∣a(p2+pk1)∣⩽4a∣⩽42p+k+1∣⩽4p2+pk1∣⩽4a∣⩽4a=±1,±2,±3,±42p+k+1∣⩽4p2+pk1∣⩽4[rememberp0p+k0]k=1p=2,1k=2p=3,1k=3p=4,2,1k=4p=3,1L1={a,p,p+1,a(2p+1),ap(p+1)}p=2L1={a,2,1,3a,2a}impossiblep=1L1={a,1,2,3a,2a}impossibleL2={a,p,p+2,2a(p+1),ap(p+2)}p=3L2={a,3,1,4a,3a}impossiblep=1L2={a,1,1,0,a}a=±2L3={a,p,p+3,a(2p+3),ap(p+3)}p=4L3={a,4,1,5a,4a}impossiblep=2L3={a,2,1,a,2a}impossiblep=1L3={a,1,2,a,2a}impossibleL4={a,p,p+4,2a(p+2),ap(p+4)}p=3L4={a,3,1,2a,3a}impossiblep=1L4={a,1,3,2a,3a}impossibleWeget2solutions1.a=2b=0c=2p=1q=12x2+2=02.a=2b=0c=2p=1q=12x22=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com