Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 212445 by ChantalYah last updated on 13/Oct/24

Commented by Frix last updated on 13/Oct/24

80cos A ? 150sin A =13    80cos A −150sin A =13  −170sin (A−tan^(−1)  (8/(15))) =13  sin (A−tan^(−1)  (8/(15))) =−((13)/(170))  A= { ((2nπ+tan^(−1)  (8/(15)) −sin^(−1)  ((13)/(170)))),(((2n+1)π+tan^(−1)  (8/(15)) +sin^(−1)  ((13)/(170)))) :}    80cos A +150sin A =13  170sin (A+tan^(−1)  (8/(15))) =13  sin (A+tan^(−1)  (8/(15))) =((13)/(170))  A= { ((2nπ−tan^(−1)  (8/(15)) +sin^(−1)  ((13)/(170)))),(((2n+1)π−tan^(−1)  (8/(15)) −sin^(−1)  ((13)/(170)))) :}

80cosA?150sinA=1380cosA150sinA=13170sin(Atan1815)=13sin(Atan1815)=13170A={2nπ+tan1815sin113170(2n+1)π+tan1815+sin11317080cosA+150sinA=13170sin(A+tan1815)=13sin(A+tan1815)=13170A={2nπtan1815+sin113170(2n+1)πtan1815sin113170

Answered by mr W last updated on 13/Oct/24

(8/( (√(8^2 +15^2 )))) cos A−((15)/( (√(8^2 +15^2 )))) sin A=((13)/(10(√(8^2 +15^2 ))))  cos α cos A−sin α sin A=((13)/(170))  cos (α+A)=((13)/(170))  ⇒α+A=2kπ±cos^(−1) ((13)/(170))  ⇒A=2kπ±cos^(−1) ((13)/(170))−cos^(−1) (8/(17))

882+152cosA1582+152sinA=131082+152cosαcosAsinαsinA=13170cos(α+A)=13170α+A=2kπ±cos113170A=2kπ±cos113170cos1817

Terms of Service

Privacy Policy

Contact: info@tinkutara.com