Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21247 by Tinkutara last updated on 17/Sep/17

If [ ] represents the greatest integer  function and f(x) = x − [x] then  number of real roots of the equation  f(x) + f((1/x)) = 1 are infinite.  True/False

$$\mathrm{If}\:\left[\:\right]\:\mathrm{represents}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer} \\ $$$$\mathrm{function}\:\mathrm{and}\:{f}\left({x}\right)\:=\:{x}\:−\:\left[{x}\right]\:\mathrm{then} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${f}\left({x}\right)\:+\:{f}\left(\frac{\mathrm{1}}{{x}}\right)\:=\:\mathrm{1}\:\mathrm{are}\:\mathrm{infinite}. \\ $$$$\boldsymbol{\mathrm{True}}/\boldsymbol{\mathrm{False}} \\ $$

Answered by dioph last updated on 21/Sep/17

x−[x] + (1/x)−[(1/x)] = 1  x = 1 is not a root.  if x > 1, [(1/x)] = 0 and hence:  x − [x] + (1/x) = 1  For some fixed [x]=k we have:  x^2  −(k+1)x + 1 = 0  x = ((k+1±(√(k^2 +2k−3)))/2)  k = 1 ⇒ x = 1 which we have already  considered.  k > 1 ⇒ 2k > 3  ⇒ k^2  < k^2 +2k−3 < (k+1)^2   ⇒ k+(1/2) < ((k+1+(√(k^2 +2k−3)))/2) < k+1  Hence there is one real root x for  every k = [x] > 1  Because we have no further assumptions  about k, the function does indeed  have infinite real roots (True)

$${x}−\left[{x}\right]\:+\:\frac{\mathrm{1}}{{x}}−\left[\frac{\mathrm{1}}{{x}}\right]\:=\:\mathrm{1} \\ $$$${x}\:=\:\mathrm{1}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{root}. \\ $$$$\mathrm{if}\:{x}\:>\:\mathrm{1},\:\left[\frac{\mathrm{1}}{{x}}\right]\:=\:\mathrm{0}\:\mathrm{and}\:\mathrm{hence}: \\ $$$${x}\:−\:\left[{x}\right]\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{1} \\ $$$$\mathrm{For}\:\mathrm{some}\:\mathrm{fixed}\:\left[{x}\right]={k}\:\mathrm{we}\:\mathrm{have}: \\ $$$${x}^{\mathrm{2}} \:−\left({k}+\mathrm{1}\right){x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$${x}\:=\:\frac{{k}+\mathrm{1}\pm\sqrt{{k}^{\mathrm{2}} +\mathrm{2}{k}−\mathrm{3}}}{\mathrm{2}} \\ $$$${k}\:=\:\mathrm{1}\:\Rightarrow\:{x}\:=\:\mathrm{1}\:\mathrm{which}\:\mathrm{we}\:\mathrm{have}\:\mathrm{already} \\ $$$$\mathrm{considered}. \\ $$$${k}\:>\:\mathrm{1}\:\Rightarrow\:\mathrm{2}{k}\:>\:\mathrm{3} \\ $$$$\Rightarrow\:{k}^{\mathrm{2}} \:<\:{k}^{\mathrm{2}} +\mathrm{2}{k}−\mathrm{3}\:<\:\left({k}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{k}+\frac{\mathrm{1}}{\mathrm{2}}\:<\:\frac{{k}+\mathrm{1}+\sqrt{{k}^{\mathrm{2}} +\mathrm{2}{k}−\mathrm{3}}}{\mathrm{2}}\:<\:{k}+\mathrm{1} \\ $$$$\mathrm{Hence}\:\mathrm{there}\:\mathrm{is}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:{x}\:\mathrm{for} \\ $$$$\mathrm{every}\:{k}\:=\:\left[{x}\right]\:>\:\mathrm{1} \\ $$$$\mathrm{Because}\:\mathrm{we}\:\mathrm{have}\:\mathrm{no}\:\mathrm{further}\:\mathrm{assumptions} \\ $$$$\mathrm{about}\:{k},\:\mathrm{the}\:\mathrm{function}\:\mathrm{does}\:\mathrm{indeed} \\ $$$$\mathrm{have}\:\mathrm{infinite}\:\mathrm{real}\:\mathrm{roots}\:\left(\boldsymbol{\mathrm{True}}\right) \\ $$

Commented by dioph last updated on 21/Sep/17

k ∈ Z^+ , then:  k > 1 ⇒ k ≥ 2 ⇒ 2k ≥ 4 > 3

$${k}\:\in\:\mathbb{Z}^{+} ,\:\mathrm{then}: \\ $$$${k}\:>\:\mathrm{1}\:\Rightarrow\:{k}\:\geqslant\:\mathrm{2}\:\Rightarrow\:\mathrm{2}{k}\:\geqslant\:\mathrm{4}\:>\:\mathrm{3} \\ $$

Commented by Tinkutara last updated on 22/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com