Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 212499 by efronzo1 last updated on 15/Oct/24

  Given a,b,c and d are reals    numbers such that        { ((a^2 +b^2 =10)),((c^2 +d^2 =10 )),((ab+cd=0)) :}    Find ac + bd.

Givena,b,canddarerealsnumberssuchthat{a2+b2=10c2+d2=10ab+cd=0Findac+bd.

Answered by ajfour last updated on 15/Oct/24

(a+b)^2 =10+2ab  (c+d)^2 =10+2cd  let   (d/b)=−(c/a)=k  c^2 +d^2 =k^2 (a^2 +b^2 )=10  ⇒  k^2 =1    as   (a^2 +b^2 )=10    say  k=1  ⇒  d=b, c=−a  ac+bd=−a^2 +b^2 =10−2a^2 =2b^2 −10  i think it depends on choice of   a^2 , b^2   with the condition a^2 +b^2 =10

(a+b)2=10+2ab(c+d)2=10+2cdletdb=ca=kc2+d2=k2(a2+b2)=10k2=1as(a2+b2)=10sayk=1d=b,c=aac+bd=a2+b2=102a2=2b210ithinkitdependsonchoiceofa2,b2withtheconditiona2+b2=10

Answered by Ghisom last updated on 16/Oct/24

ab+cd=0 ⇒ d=−((ab)/c)  c^2 +d^2 =10 ⇒ b^2 =((c^2 (10−c^2 ))/a^2 )  a^2 +b^2 =10 ⇒ a^4 −10a^2 −c^4 +10c^2 =0  ⇒  c=±a∨c=±(√(10−a^2 ))  ⇒ ac+bd=±2(a^2 −5)∨ac+bd=0

ab+cd=0d=abcc2+d2=10b2=c2(10c2)a2a2+b2=10a410a2c4+10c2=0c=±ac=±10a2ac+bd=±2(a25)ac+bd=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com