Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 212765 by issac last updated on 23/Oct/24

i  generalized Bessel function′s  Laplace Transform  L.TJ_ν (z)=(((s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1)))) , s∈[0,∞) , ν∈R  L.T Y_ν (z)=((cot(πν)(s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1))))−((csc(πν)(s+(√(s^2 +1)))^ν )/( (√(s^2 +1))))  s∈[0,∞) , ν∈R^+ \{0,Z^+ }  but.... i can′t explain why L.T Y_ν (z)  is undefined when ν∈Z^+ \{0}.....  Help me.....!!!

igeneralizedBesselfunctionsLaplaceTransformL.TJν(z)=(s+s2+1)νs2+1,s[0,),νRL.TYν(z)=cot(πν)(s+s2+1)νs2+1csc(πν)(s+s2+1)νs2+1s[0,),νR+{0,Z+}but....icantexplainwhyL.TYν(z)isundefinedwhenνZ+{0}.....Helpme.....!!!

Answered by Frix last updated on 23/Oct/24

  cot πν =(1/(tan πν)) ⇒ tan πν ≠0 ⇒ ν≠n∀n∈Z  csc πν =(1/(sin πν)) ⇒ sin πν ≠0 ⇒ ν≠n∀n∈Z

cotπν=1tanπνtanπν0νnnZcscπν=1sinπνsinπν0νnnZ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com