Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 212822 by ajfour last updated on 24/Oct/24

Commented by ajfour last updated on 24/Oct/24

Consider triangle isosceles about  upper vertex.

Considertriangleisoscelesaboutuppervertex.

Commented by Ghisom last updated on 26/Oct/24

an approach from the far side:  (sorry I changed a⇄b)  △_(ppq)  ⇒ r=((q(√(2p−q)))/(2(√(2p+q))))  let q=1 ⇒ r=((√(2p−1))/( 2(√(2p+1))))  the vertices of the △ are P, Q, R  P= ((((√(2p−1))/( 2(√(2p+1))))),(((√(2p−1))/( 2(√(2p+1))))) )  Q= (((((√(6p+5))+(√(2p−1)))/(2(√(2p+1))))),(0) )  R= ((((p/2)−(1/4)+(((√(6p+5))+(√(2p−1)))/( 4(√(2p+1)))))),((((√((6p+5)(2p−1)))/4)+((√(2p−1))/( 4(√(2p+1)))))) )  C_I = ((((1/4)−(1/(2(2p+1)))+(((√(6p+5))+2(√(2p−1)))/(4(√(2p+1)))))),((((√((6p+5)(2p−1)))/(4(2p+1)))+((√(2p−1))/( 4(√(2p+1)))))) )  ⇒  a=(((√(6p+5))+2(√(2p−1)))/(2(√(2p+1))))  b=((√((6p+5)(2p−1)))/4)+((√(2p−1))/( 4(√(2p+1))))  ∣PC_I ∣=((√p)/( (√(2p+1))))  if we want to match the picture ⇒  a≥b ⇒ (1/2)<p≤1.66853858571     { ((r=((√(2p−1))/( 2(√(2p+1)))))),((a=(((√(6p+5))+2(√(2p−1)))/(2(√(2p+1)))))),((b=((√((6p+5)(2p−1)))/4)+((√(2p−1))/( 4(√(2p+1)))))) :}  we can find p for any ratio a:b      further we can easily get   { ((r=((√(2p−1))/( 2(√(2p+1)))))),((a=2r+(√(1−r^2 )))),((b=((1/2)+((2(√(1−r^2 )))/(1−4r^2 )))r)) :}  (2) ⇔ (√(1−r^2 ))=a−2r  inserting in (3) & transforming gives  r^3 −2(b−1)r^2 −(a+(1/4))r+(b/2)=0  ⇒  r=((2b)/3)−(1/3)+((2(√(−3u)))/3)sin ((arcsin ((3(√3)v)/(2(√(−u^3 )))))/3)  where  u=−((4b^2 )/3)−a+((8b)/3)−((19)/(12))  v=−((16b^3 )/(27))+((16b^2 )/9)−((2ab)/3)+((2a)/3)−((13b)/9)+((41)/(54))  but a, b are not independent in this  approach!

anapproachfromthefarside:(sorryIchangedab)ppqr=q2pq22p+qletq=1r=2p122p+1theverticesoftheareP,Q,RP=(2p122p+12p122p+1)Q=(6p+5+2p122p+10)R=(p214+6p+5+2p142p+1(6p+5)(2p1)4+2p142p+1)CI=(1412(2p+1)+6p+5+22p142p+1(6p+5)(2p1)4(2p+1)+2p142p+1)a=6p+5+22p122p+1b=(6p+5)(2p1)4+2p142p+1PCI∣=p2p+1ifwewanttomatchthepictureab12<p1.66853858571{r=2p122p+1a=6p+5+22p122p+1b=(6p+5)(2p1)4+2p142p+1wecanfindpforanyratioa:bfurtherwecaneasilyget{r=2p122p+1a=2r+1r2b=(12+21r214r2)r(2)1r2=a2rinsertingin(3)&transforminggivesr32(b1)r2(a+14)r+b2=0r=2b313+23u3sinarcsin33v2u33whereu=4b23a+8b31912v=16b327+16b292ab3+2a313b9+4154buta,barenotindependentinthisapproach!

Commented by Frix last updated on 26/Oct/24

Considering the originally posted picture:  We can solve for a(b, r) [degree 2] or for  b(a, r) [degree 2 for b^2 ] but not for r(a, b)  [degree 6].

Consideringtheoriginallypostedpicture:Wecansolvefora(b,r)[degree2]orforb(a,r)[degree2forb2]butnotforr(a,b)[degree6].

Commented by Frix last updated on 27/Oct/24

No problem, I will upload my workings  again later.

Noproblem,Iwilluploadmyworkingsagainlater.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com