Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 212844 by efronzo1 last updated on 25/Oct/24

   ⇃

Commented by AlagaIbile last updated on 29/Oct/24

 det(S^2 ) = det^2 (S) = 36   det(S) = ± 6   By C-H Theorem:   S^2  − tr(S) S + (±6) =0   Introduce trace to d eqn  tr(S^2 )−tr^2 (S)+2(±6)=0   13 − tr^2 (S) ± 12 = 0   tr(S) = ± 5, ± 1   For trace(S) = ± 5   ∴  ±5S = S^2  + 6I_2      S = ±  [(4,(-1)),(2,1) ]   For trace(S) = ±1   ±S = S^2  − 6I_2      S = ±  [(8,(-5)),((10),(-7)) ]

det(S2)=det2(S)=36det(S)=±6ByCHTheorem:S2tr(S)S+(±6)=0Introducetracetodeqntr(S2)tr2(S)+2(±6)=013tr2(S)±12=0tr(S)=±5,±1Fortrace(S)=±5±5S=S2+6I2S=±[4121]Fortrace(S)=±1±S=S26I2S=±[85107]

Answered by Rasheed.Sindhi last updated on 30/Oct/24

  let S=± ((a,b),(c,d) ) ; assuming a,b,c,d∈Z  S^2 =(± ((a,b),(c,d) ))^2 = (((a^2 +bc),(ab+bd)),((ca+cd),(bc+d^2 )) )=  (((14      −5)),((10      −1)) )   a^2 +bc=14...i  , b(a+d)=−5...ii  c(a+d)=10...iii , bc+d^2 =−1...iv  i − iv:a^2 −d^2 =15   { (((a−d)(a+d)=3×5⇒ { ((a−d=3)),((a+d=5)) :}⇒a=4,d=1)),(((a−d)(a+d)=5×3⇒ { ((a−d=5)),((a+d=3)) :}⇒a=4,d=−1)),(((a−d)(a+d)=1×15⇒ { ((a−d=1)),((a+d=15)) :}⇒a=8,d=7)),(((a−d)(a+d)=15×1⇒ { ((a−d=15)),((a+d=1)) :}⇒a=8,d=−7)) :}  ii⇒ b=((−5)/(a+d))     iii⇒c=((10)/(a+d))     a=4,d=1⇒b=−1,c=2  a=4,d=−1⇒b=((−5)/3)∉Z , c=((10)/3)∉Z Rejected   a=8,d=7⇒b=−(1/3)∉Z,c=((10)/(15))=(2/3)∉Z Rejected  a=8,d=−7⇒b=−5,c=10     S=± ((4,(−1)),(2,(    1)) )  ,± ((8,(−5)),((10),(−7)) )

letS=±(abcd);assuminga,b,c,dZS2=(±(abcd))2=(a2+bcab+bdca+cdbc+d2)=(145101)a2+bc=14...i,b(a+d)=5...iic(a+d)=10...iii,bc+d2=1...iviiv:a2d2=15{(ad)(a+d)=3×5{ad=3a+d=5a=4,d=1(ad)(a+d)=5×3{ad=5a+d=3a=4,d=1(ad)(a+d)=1×15{ad=1a+d=15a=8,d=7(ad)(a+d)=15×1{ad=15a+d=1a=8,d=7iib=5a+diiic=10a+da=4,d=1b=1,c=2a=4,d=1b=53Z,c=103ZRejecteda=8,d=7b=13Z,c=1015=23ZRejecteda=8,d=7b=5,c=10S=±(4121),±(85107)

Commented by Ghisom last updated on 30/Oct/24

��

Answered by Rasheed.Sindhi last updated on 26/Oct/24

let S= ((a,b),(c,d) )  S^2 = ((a,b),(c,d) )^2 = (((a^2 +bc),(ab+bd)),((ca+cd),(bc+d^2 )) )=  (((14      −5)),((10      −1)) )   a^2 +bc=14  , b(a+d)=−5  c(a+d)=10 , bc+d^2 =−1  a+d=−(5/b)=((10)/c)⇒c=−2b  bc=14−a^2 =−1−d^2 ⇒a^2 −d^2 =15  ⇒(a−d)(a+d)=3×5  let  a−d=3           a+d=5⇒a=5−d  S= (((5−d),b),((−2b),d) )  b=−1, d=1  One of answers:  S= ((4,(−1)),(2,(     1)) )  Verification:  S^2 = ((4,(−1)),(2,(     1)) ) ((4,(−1)),(2,(    1)) )= (((16−2),(−4−1)),((8+2),(−2+1)) )= (((14),(−5)),((10),(−1)) )

letS=(abcd)S2=(abcd)2=(a2+bcab+bdca+cdbc+d2)=(145101)a2+bc=14,b(a+d)=5c(a+d)=10,bc+d2=1a+d=5b=10cc=2bbc=14a2=1d2a2d2=15(ad)(a+d)=3×5letad=3a+d=5a=5dS=(5db2bd)b=1,d=1Oneofanswers:S=(4121)Verification:S2=(4121)(4121)=(162418+22+1)=(145101)

Commented by Rasheed.Sindhi last updated on 26/Oct/24

ThanX sir!  Pl see my next answer,where  I covered all integral solutions.

ThanXsir!Plseemynextanswer,whereIcoveredallintegralsolutions.

Commented by Ghisom last updated on 26/Oct/24

there are 4 solutions  ± ((4,(−1)),(2,1) )  and ± ((8,(−5)),((10),(−7)) )

thereare4solutions±(4121)and±(85107)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com