Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21293 by Tinkutara last updated on 19/Sep/17

Let n be an even positive integer such  that (n/2) is odd and let α_0 , α_1 , ...., α_(n−1)  be  the complex roots of unity of order n.  Prove that Π_(k=0) ^(n−1) (a + bα_k ^2 ) = (a^(n/2)  + b^(n/2) )^2   for any complex numbers a and b.

$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{an}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{such} \\ $$$$\mathrm{that}\:\frac{{n}}{\mathrm{2}}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{let}\:\alpha_{\mathrm{0}} ,\:\alpha_{\mathrm{1}} ,\:....,\:\alpha_{{n}−\mathrm{1}} \:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{of}\:\mathrm{order}\:{n}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({a}\:+\:{b}\alpha_{{k}} ^{\mathrm{2}} \right)\:=\:\left({a}^{\frac{{n}}{\mathrm{2}}} \:+\:{b}^{\frac{{n}}{\mathrm{2}}} \right)^{\mathrm{2}} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{complex}\:\mathrm{numbers}\:{a}\:\mathrm{and}\:{b}. \\ $$

Answered by revenge last updated on 24/Sep/17

x^n −1=(x−α_0 )(x−α_1 )(x−α_2 )...(x−α_(n−1) )  Putting x=i(√(a/b)), we get  i^n ((a/b))^(n/2) −1=(i(√(a/b))−α_0 )(i(√(a/b))−α_1 )...(i(√(a/b))−α_(n−1) )  i^n a^(n/2) −b^(n/2) =(i(√a)−(√b)α_0 )(i(√a)−(√b)α_1 )...(i(√a)−(√b)α_(n−1) ) ...(1)  Similarly putting x=−i(√(a/b)), we get  (−i^n )a^(n/2) −b^(n/2) =(−i(√a)−(√b)α_0 )(−i(√a)−(√b)α_1 )...(−i(√a)−(√b)α_(n−1) )  i^n a^(n/2) −b^(n/2) =(i(√a)+(√b)α_0 )(i(√a)+(√b)α_1 )...(i(√a)+(√b)α_(n−1) ) ...(2)  Multiplying (1) and (2), we get  (i^n a^(n/2) −b^(n/2) )^2 =(a+bα_0 ^2 )(a+bα_1 ^2 )...(a+bα_(n−1) ^2 )=Π_(k=0) ^(n−1) (a+bα_k ^2 )  Since n=2m, where m is odd, ∴ i^(2m) =−1. So,  (a^(n/2) +b^(n/2) )^2 =Π_(k=0) ^(n−1) (a+bα_k ^2 )

$${x}^{{n}} −\mathrm{1}=\left({x}−\alpha_{\mathrm{0}} \right)\left({x}−\alpha_{\mathrm{1}} \right)\left({x}−\alpha_{\mathrm{2}} \right)...\left({x}−\alpha_{{n}−\mathrm{1}} \right) \\ $$$${Putting}\:{x}={i}\sqrt{\frac{{a}}{{b}}},\:{we}\:{get} \\ $$$${i}^{{n}} \left(\frac{{a}}{{b}}\right)^{\frac{{n}}{\mathrm{2}}} −\mathrm{1}=\left({i}\sqrt{\frac{{a}}{{b}}}−\alpha_{\mathrm{0}} \right)\left({i}\sqrt{\frac{{a}}{{b}}}−\alpha_{\mathrm{1}} \right)...\left({i}\sqrt{\frac{{a}}{{b}}}−\alpha_{{n}−\mathrm{1}} \right) \\ $$$${i}^{{n}} {a}^{\frac{{n}}{\mathrm{2}}} −{b}^{\frac{{n}}{\mathrm{2}}} =\left({i}\sqrt{{a}}−\sqrt{{b}}\alpha_{\mathrm{0}} \right)\left({i}\sqrt{{a}}−\sqrt{{b}}\alpha_{\mathrm{1}} \right)...\left({i}\sqrt{{a}}−\sqrt{{b}}\alpha_{{n}−\mathrm{1}} \right)\:...\left(\mathrm{1}\right) \\ $$$${Similarly}\:{putting}\:{x}=−{i}\sqrt{\frac{{a}}{{b}}},\:{we}\:{get} \\ $$$$\left(−{i}^{{n}} \right){a}^{\frac{{n}}{\mathrm{2}}} −{b}^{\frac{{n}}{\mathrm{2}}} =\left(−{i}\sqrt{{a}}−\sqrt{{b}}\alpha_{\mathrm{0}} \right)\left(−{i}\sqrt{{a}}−\sqrt{{b}}\alpha_{\mathrm{1}} \right)...\left(−{i}\sqrt{{a}}−\sqrt{{b}}\alpha_{{n}−\mathrm{1}} \right) \\ $$$${i}^{{n}} {a}^{\frac{{n}}{\mathrm{2}}} −{b}^{\frac{{n}}{\mathrm{2}}} =\left({i}\sqrt{{a}}+\sqrt{{b}}\alpha_{\mathrm{0}} \right)\left({i}\sqrt{{a}}+\sqrt{{b}}\alpha_{\mathrm{1}} \right)...\left({i}\sqrt{{a}}+\sqrt{{b}}\alpha_{{n}−\mathrm{1}} \right)\:...\left(\mathrm{2}\right) \\ $$$${Multiplying}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right),\:{we}\:{get} \\ $$$$\left({i}^{{n}} {a}^{\frac{{n}}{\mathrm{2}}} −{b}^{\frac{{n}}{\mathrm{2}}} \right)^{\mathrm{2}} =\left({a}+{b}\alpha_{\mathrm{0}} ^{\mathrm{2}} \right)\left({a}+{b}\alpha_{\mathrm{1}} ^{\mathrm{2}} \right)...\left({a}+{b}\alpha_{{n}−\mathrm{1}} ^{\mathrm{2}} \right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({a}+{b}\alpha_{{k}} ^{\mathrm{2}} \right) \\ $$$${Since}\:{n}=\mathrm{2}{m},\:{where}\:{m}\:{is}\:{odd},\:\therefore\:{i}^{\mathrm{2}{m}} =−\mathrm{1}.\:{So}, \\ $$$$\left({a}^{\frac{{n}}{\mathrm{2}}} +{b}^{\frac{{n}}{\mathrm{2}}} \right)^{\mathrm{2}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({a}+{b}\alpha_{{k}} ^{\mathrm{2}} \right) \\ $$

Commented by Tinkutara last updated on 24/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com