All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 21294 by Tinkutara last updated on 19/Sep/17
Letz1,z2,z3becomplexnumbers,notallreal,suchthat∣z1∣=∣z2∣=∣z3∣=1and2(z1+z2+z3)−3z1z2z3∈R.Provethatmax(argz1,argz2,argz3)⩾π6.Where0<arg(z1),arg(z2),arg(z3)<2π.
Answered by revenge last updated on 24/Sep/17
Letzk=cosθk+isinθk;k∈{1,2,3}Now2(sinθ1+sinθ2+sinθ3)=3sin(θ1+θ2+θ3)Letitbe2Σsinθ=3sinΣθ⇒sinΣθΣsinθ=23...(1)SincebyJensen′sinequality,sin(Σθ3)⩾Σsinθ3TakingΣθ=π2sothatLHS=12,wegetΣsinθ⩽32Andfrom(1)⇒Σsinθ=32Thisisonlypossiblewhenθ1=θ2=θ3;alsoΣθ=π2Somaximumvalueofθis13(π2)=π6.
Commented by Tinkutara last updated on 24/Sep/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com