Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21294 by Tinkutara last updated on 19/Sep/17

Let z_1 , z_2 , z_3  be complex numbers, not  all real, such that ∣z_1 ∣ = ∣z_2 ∣ = ∣z_3 ∣ = 1  and 2(z_1  + z_2  + z_3 ) − 3z_1 z_2 z_3  ∈ R.  Prove that max(arg z_1 , arg z_2 , arg z_3 ) ≥  (π/6) . Where 0 < arg(z_1 ), arg(z_2 ), arg(z_3 )  < 2π.

$$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers},\:\mathrm{not} \\ $$$$\mathrm{all}\:\mathrm{real},\:\mathrm{such}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \mid\:=\:\mid{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{3}} \mid\:=\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{2}\left({z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} \right)\:−\:\mathrm{3}{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}} \:\in\:{R}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{max}\left(\mathrm{arg}\:{z}_{\mathrm{1}} ,\:\mathrm{arg}\:{z}_{\mathrm{2}} ,\:\mathrm{arg}\:{z}_{\mathrm{3}} \right)\:\geqslant \\ $$$$\frac{\pi}{\mathrm{6}}\:.\:\mathrm{Where}\:\mathrm{0}\:<\:\mathrm{arg}\left({z}_{\mathrm{1}} \right),\:\mathrm{arg}\left({z}_{\mathrm{2}} \right),\:\mathrm{arg}\left({z}_{\mathrm{3}} \right) \\ $$$$<\:\mathrm{2}\pi. \\ $$

Answered by revenge last updated on 24/Sep/17

Let z_k =cos θ_k +isin θ_k ;k∈{1,2,3}  Now 2(sin θ_1 +sin θ_2 +sin θ_3 )=3sin (θ_1 +θ_2 +θ_3 )  Let it be 2Σsin θ=3sin Σθ  ⇒((sin Σθ)/(Σsin θ))=(2/3) ...(1)  Since by Jensen′s inequality, sin (((Σθ)/3))≥((Σsin θ)/3)  Taking Σθ=(π/2) so that LHS=(1/2), we get Σsin θ≤(3/2)  And from (1)⇒Σsin θ=(3/2)  This is only possible when θ_1 =θ_2 =θ_3 ; also Σθ=(π/2)  So maximum value of θ is (1/3)((π/2))=(π/6).

$${Let}\:{z}_{{k}} =\mathrm{cos}\:\theta_{{k}} +{i}\mathrm{sin}\:\theta_{{k}} ;{k}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3}\right\} \\ $$$${Now}\:\mathrm{2}\left(\mathrm{sin}\:\theta_{\mathrm{1}} +\mathrm{sin}\:\theta_{\mathrm{2}} +\mathrm{sin}\:\theta_{\mathrm{3}} \right)=\mathrm{3sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{2}} +\theta_{\mathrm{3}} \right) \\ $$$${Let}\:{it}\:{be}\:\mathrm{2}\Sigma\mathrm{sin}\:\theta=\mathrm{3sin}\:\Sigma\theta \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\Sigma\theta}{\Sigma\mathrm{sin}\:\theta}=\frac{\mathrm{2}}{\mathrm{3}}\:...\left(\mathrm{1}\right) \\ $$$${Since}\:{by}\:{Jensen}'{s}\:{inequality},\:\mathrm{sin}\:\left(\frac{\Sigma\theta}{\mathrm{3}}\right)\geqslant\frac{\Sigma\mathrm{sin}\:\theta}{\mathrm{3}} \\ $$$${Taking}\:\Sigma\theta=\frac{\pi}{\mathrm{2}}\:{so}\:{that}\:{LHS}=\frac{\mathrm{1}}{\mathrm{2}},\:{we}\:{get}\:\Sigma\mathrm{sin}\:\theta\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${And}\:{from}\:\left(\mathrm{1}\right)\Rightarrow\Sigma\mathrm{sin}\:\theta=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${This}\:{is}\:{only}\:{possible}\:{when}\:\theta_{\mathrm{1}} =\theta_{\mathrm{2}} =\theta_{\mathrm{3}} ;\:{also}\:\Sigma\theta=\frac{\pi}{\mathrm{2}} \\ $$$${So}\:{maximum}\:{value}\:{of}\:\theta\:{is}\:\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\pi}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{6}}. \\ $$

Commented by Tinkutara last updated on 24/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com