Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213007 by issac last updated on 30/Oct/24

can′t find  coefficient f^((n)) (α) of Y_ν (z)  formal power series of Y_ν (z) is  Y_ν (z)=Σ_(h=0) ^∞  ((Y_ν ^((h)) (α))/(h!))(z−α)^h   But.. can′t generalize coeff Y_ν ^((h)) (α)  series representation ↓  Y_ν (z)=−(1/π)((2/z))^ν ∙Σ_(h=0) ^(ν−1)  ((𝚪(ν−h))/(h!))((z/2))^(2h) +(2/π)J_ν (z)ln((1/2)z)−(1/π)((z/2))^ν ∙Σ_(h=0) ^∞  (((−1)^h (ψ^((0)) (h+1)−ψ^((0)) (h+ν+1)))/(h!(h+ν)!))((z/2))^(2h)

cantfindcoefficientf(n)(α)ofYν(z)formalpowerseriesofYν(z)isYν(z)=h=0Yν(h)(α)h!(zα)hBut..cantgeneralizecoeffYν(h)(α)seriesrepresentationYν(z)=1π(2z)νν1h=0Γ(νh)h!(z2)2h+2πJν(z)ln(12z)1π(z2)νh=0(1)h(ψ(0)(h+1)ψ(0)(h+ν+1))h!(h+ν)!(z2)2h

Answered by MrGaster last updated on 03/Nov/24

Y_ν (z)=(1/π)((2/z))^ν ∙Σ_(h=0) ^(ν−1) ((Γ(ν−h))/(h!))((z/2))^(2h) +(2/π)J_ν (z)ln((1/z)z)−(1/π)((z/2))^ν ∙Σ_(h=0) ^∞ (((−1)^h (ψ^((0)) (h+1)−ψ^((0)) (h+ν+1))/(h!(h+ν)!))((z/2))^(2h)   Y_ν (z)Σ_(h=0) ^∞ ((Y_ν ^((h)) (α))/(h!))(z−α)^h   Y_ν ^((h)) (α)= { ((−(1/π)((2/α))^ν ((Γ(ν−h))/(h!))((α/2))^(2h)                                                                                                              ,h=0.1,…,ν−1)),(((2/π)J_ν ^((h−ν)) (α)ln((1/2)α)−(1/π)((α/2))^ν (((−1)^(h−ν) (ψ^((0)) (h−ν+1)−ψ^((0)) (h+1)))/((h−ν)!(h+ν)!))((α/2))^(2(h−ν))  ,h=ν,ν+1,…)) :}

Yν(z)=1π(2z)νν1h=0Γ(νh)h!(z2)2h+2πJν(z)ln(1zz)1π(z2)νh=0(1)h(ψ(0)(h+1)ψ(0)(h+ν+1)h!(h+ν)!(z2)2hYν(z)h=0Yν(h)(α)h!(zα)hYν(h)(α)={1π(2α)νΓ(νh)h!(α2)2h,h=0.1,,ν12πJν(hν)(α)ln(12α)1π(α2)ν(1)hν(ψ(0)(hν+1)ψ(0)(h+1))(hν)!(h+ν)!(α2)2(hν),h=ν,ν+1,

Terms of Service

Privacy Policy

Contact: info@tinkutara.com