Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 213022 by Spillover last updated on 28/Oct/24

Answered by TonyCWX08 last updated on 31/Oct/24

FC = a+b  height of trapezium_(AFBC)    = (√(b^2 −((b/2))^2 ))  = (√((3b^2 )/4))  = ((b(√3))/2)  Area_(AFBC)   =(1/2)(a+a+b)(((b(√3))/2))  =((2ab(√3)+b^2 (√3))/4)  =((ab(√3))/2)+((b/2))^2 (√3)  =(√3)(((ab)/2)+((b^2 /2)))    Little equilateral triangle formed when joining point A to D and F to C  Side length = b  Area = (b^2 /4)(√3)    Big equilateral triangle formed in the middle of the Hexagon when joining the same points  Side length   = a+b−2b  = a−b  Area = (((a−b)^2 )/4)(√3)    Area of Cyclic Hexagon  = 3Area_(AFBC)  − 3Area_(SmallΔ)  + Area_(BigΔ)   = 3((√3)(((ab)/2)+(b^2 /4))) − 3((b^2 /4)(√3)) + ((a^2 −2ab+b^2 )/4)(√3)  =((3ab(√3))/2)+((3(√3)b^2 )/4)−((3b^2 (√3))/4)+(((√3)(a^2 −2ab+b^2 ))/4)  =((6ab(√3)+3b^2 (√3)−3b^2 (√3)+a^2 (√3)−2ab(√3)+b^2 (√3))/4)  =((a^2 (√3)+4ab(√3)+b^2 (√3))/4)  =(√3)[(a^2 /4)+ab+(b^2 /4)]  =(√3)[((a/2))^2 +((b/2))^2 +ab]  Hence Proved.

FC=a+bheightoftrapeziumAFBC=b2(b2)2=3b24=b32AreaAFBC=12(a+a+b)(b32)=2ab3+b234=ab32+(b2)23=3(ab2+(b22))LittleequilateraltriangleformedwhenjoiningpointAtoDandFtoCSidelength=bArea=b243BigequilateraltriangleformedinthemiddleoftheHexagonwhenjoiningthesamepointsSidelength=a+b2b=abArea=(ab)243AreaofCyclicHexagon=3AreaAFBC3AreaSmallΔ+AreaBigΔ=3(3(ab2+b24))3(b243)+a22ab+b243=3ab32+33b243b234+3(a22ab+b2)4=6ab3+3b233b23+a232ab3+b234=a23+4ab3+b234=3[a24+ab+b24]=3[(a2)2+(b2)2+ab]HenceProved.

Answered by TonyCWX08 last updated on 31/Oct/24

Area_(PQR) =(X^2 /4)(√3)  (X^2 /4)(√3) = (√3)[((b/2))^2 +((a/2))^2 +ab]  ((X/2))^2 =[((a/2))^2 +ab+((b/2))^2 ]  (X/2) = (√(((a/2))^2 +ab+((b/2))^2 ))  (X/2) =  (√((a^2 /4)+((4ab)/4)+(b^2 /4)))  (X/2) = (√((a^2 +4ab+b^2 )/4))  (X/2) = ((√(a^2 +4ab+b^2 ))/2)  X = (√(a^2 +4ab+b^2 ))

AreaPQR=X243X243=3[(b2)2+(a2)2+ab](X2)2=[(a2)2+ab+(b2)2]X2=(a2)2+ab+(b2)2X2=a24+4ab4+b24X2=a2+4ab+b24X2=a2+4ab+b22X=a2+4ab+b2

Answered by TonyCWX08 last updated on 31/Oct/24

Commented by Spillover last updated on 31/Oct/24

great work thank you

greatworkthankyou

Commented by TonyCWX08 last updated on 01/Nov/24

Welcome.

Welcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com