Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 213098 by MathematicalUser2357 last updated on 30/Oct/24

∫((3x+2)/(5x^2 +2x+3))dx=?

3x+25x2+2x+3dx=?

Answered by issac last updated on 30/Oct/24

Hmmmmm.....  ((3x+2)/(5x^2 +2x+3))=((3(10x+2))/(10(5x^2 +2x+3)))+(7/(5(5x^2 +2x+3)))  ∫  ((3x+2)/(5x^2 +2x+3)) =∫ ((3(10x+2))/(10(5x^2 +2x+3)))+∫ (7/(5(5x^2 +2x+3)))  (3/(10)) ∫  ((10x+2)/(5x^2 +2x+3))dx+(7/5) ∫  (1/(5x^2 +2x+3))dx  u=5x^2 +2x+3   → du=(10x+2)dx  (3/(10)) ∫  (du/u)=(3/(10))ln(u)=(3/(10))ln(5x^2 +2x+3)   (A)  and (7/5) ∫  (1/(5x^2 +2x+3))dx=(7/5) ∫  (1/(((√5)x+(1/( (√5))))^2 +((14)/5)))dx  (√5)x+(1/( (√5)))=u  → du=(√5)dx  (7/(5(√5))) ∫  (5/(14(((5u^2 )/(14))+1)))du=(1/(2(√5))) ∫  (1/(((5u^2 )/(14))+1))du  p=(√(5/(14)))v  →  dp=(√(5/(14))) dv  (1/5)(√(7/2)) ∫  (1/(p^2 +1))dp=(1/5)(√(7/2)) tan^(−1) (p)  =(1/5)(√(7/2)) tan^(−1) ((√(5/(14)))v)=(1/5)(√(7/2))tan^(−1) (((5x+1)/( (√(14)))))  (B)  ∴ Solution=A+B  y(x)=(3/(10))ln(5x^2 +2x+3)+((√(14))/(10)) tan^(−1) (((5x+1)/( (√(14)))))       Holy.....shit....what a terrible differantial equation   XD

Hmmmmm.....3x+25x2+2x+3=3(10x+2)10(5x2+2x+3)+75(5x2+2x+3)3x+25x2+2x+3=3(10x+2)10(5x2+2x+3)+75(5x2+2x+3)31010x+25x2+2x+3dx+7515x2+2x+3dxu=5x2+2x+3du=(10x+2)dx310duu=310ln(u)=310ln(5x2+2x+3)(A)and7515x2+2x+3dx=751(5x+15)2+145dx5x+15=udu=5dx755514(5u214+1)du=12515u214+1dup=514vdp=514dv15721p2+1dp=1572tan1(p)=1572tan1(514v)=1572tan1(5x+114)(B)Solution=A+By(x)=310ln(5x2+2x+3)+1410tan1(5x+114)Holy.....shit....whataterribledifferantialequationXD

Commented by Frix last updated on 31/Oct/24

Why terrible? Try this:  ∫sin x^3  dx=?

Whyterrible?Trythis:sinx3dx=?

Answered by MrGaster last updated on 30/Oct/24

=(1/5)∫((15x+10)/(5x^2 +2x+3))dx  =(1/5)∫((15x+2+8)/(5x^2 +2x+3))dx  =(1/5)(∫((15x+2)/(5x^2 +2x+3))dx+∫(8/(5x^2 +2x+3))dx)  =(1/5)(∫((d(5x^2 +2x+3))/(5x^2 +2x+3))+∫(8/(5(x^2 +(2/5)x+(3/5)))dx)  =(1/5)(ln∣5x^2 +2x+3∣+8∫(1/(5(x^2 +(2/5)x+(3/5))))dx)  =(1/5)(ln∣5x^2 +2x+3∣+(8/5)∫(1/((x+(1/5))^2 +(((√(14))/5))^2 ))dx)  =(1/5)ln∣5x^2 +2x+3∣+(8/(25))∙(5/( (√(14))))arctan(((x+(1/5))/((√(14))/5)))+C  =(1/5)ln∣5x^2 +2x+3∣+(8/( (√(14))))arctan(((5x+1)/( (√(14)))))+C

=1515x+105x2+2x+3dx=1515x+2+85x2+2x+3dx=15(15x+25x2+2x+3dx+85x2+2x+3dx)=15(d(5x2+2x+3)5x2+2x+3+85(x2+25x+35dx)=15(ln5x2+2x+3+815(x2+25x+35)dx)=15(ln5x2+2x+3+851(x+15)2+(145)2dx)=15ln5x2+2x+3+825514arctan(x+15145)+C=15ln5x2+2x+3+814arctan(5x+114)+C

Answered by Ghisom last updated on 30/Oct/24

∫((3x+2)/(5x^2 +2x+3))dx=       [t=((5x+1)/( (√(14))))]  =(3/5)∫(t/(t^2 +1))dt+((√(14))/(10))∫(dt/(t^2 +1))=  =(3/(10))ln (t^2 +1) +((√(14))/(10))arctan t =  =(3/(10))ln (5x^2 +2x+3) +((√(14))/(10))arctan ((5x+1)/( (√(14)))) +C

3x+25x2+2x+3dx=[t=5x+114]=35tt2+1dt+1410dtt2+1==310ln(t2+1)+1410arctant==310ln(5x2+2x+3)+1410arctan5x+114+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com