Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 213114 by efronzo1 last updated on 30/Oct/24

        ÷

÷

Answered by issac last updated on 30/Oct/24

   f(x)=−C(x−1)+(i/π)(x−1)^(5000) ln(x−1)  (thx wolfram alpha!!)  f(1)=0 , cus  f(1+0)+f(1−0)=0^(5000) =0  f^((1)) (x+1)−f^((1)) (1−x)=5000x^(4999)   ......  ??????????   Damn i was fooled XD  ∫_0 ^( 1)  f(x+1)dx+∫_0 ^( 1)  f(1−x)dx=∫_0 ^( 1)  x^(5000) dx  ∫_1 ^( 2)  f(u)−∫_1 ^( 0)  f(u)du=∫_0 ^( 2)  f(u)du=(1/(5001))  Explain.  integral both side  ∫_0 ^( 1) f(x+1)dx+∫_0 ^( 1) f(1−x)dx=∫_0 ^( 1)  x^(5000) dx  ∫_0 ^( 1)  f(x+1)dx=∫_1 ^( 2)  f(u)du  cus substitude x+1=u  du=dx  similarly ∫_0 ^1  f(1−x)dx=∫_0 ^( 1)  f(u)du  1−x=u   du=−dx  ∫_a ^( b) +∫_( b) ^( c)  =∫_( a) ^( c)     ∫_0 ^( 2)  f(u)du=∫_0 ^( 1)  x^(5000) dx=(1/(5001))  Yeah!!

f(x)=C(x1)+iπ(x1)5000ln(x1)(thxwolframalpha!!)f(1)=0,cusf(1+0)+f(10)=05000=0f(1)(x+1)f(1)(1x)=5000x4999......??????????DamniwasfooledXD01f(x+1)dx+01f(1x)dx=01x5000dx12f(u)10f(u)du=02f(u)du=15001Explain.integralbothside01f(x+1)dx+01f(1x)dx=01x5000dx01f(x+1)dx=12f(u)ducussubstitudex+1=udu=dxsimilarly01f(1x)dx=01f(u)du1x=udu=dxab+bc=ac02f(u)du=01x5000dx=15001Yeah!!

Answered by mr W last updated on 30/Oct/24

∫_0 ^2 f(x)dx  =∫_0 ^1 f(x)dx+∫_1 ^2 f(x)dx  =∫_(−1) ^0 f(1+t)d(1+t)+∫_0 ^(−1) f(1−t)d(1−t)  =∫_(−1) ^0 f(1+t)dt+∫_(−1) ^0 f(1−t)dt  =∫_(−1) ^0 [f(1+t)+f(1−t)]dt  =∫_(−1) ^0 t^(5000) dt  =[(t^(5001) /(5001))]_(−1) ^0 =(1/(5001))

02f(x)dx=01f(x)dx+12f(x)dx=10f(1+t)d(1+t)+01f(1t)d(1t)=10f(1+t)dt+10f(1t)dt=10[f(1+t)+f(1t)]dt=10t5000dt=[t50015001]10=15001

Terms of Service

Privacy Policy

Contact: info@tinkutara.com