Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213128 by klipto last updated on 30/Oct/24

lim_(x→0^(+ ) ) (2/(1+e^(−(1/x)) ))

limx0+21+e1x

Answered by a.lgnaoui last updated on 30/Oct/24

lim_(x→0^(+ ) ) (2/(1+e^(−(1/x)) ))     (2/(1+e^(−(1/x)) ))=(2/(1+(1/e^(1/x) )))  =  (2/((1+e^(1/x) )/e^(1/x) ))= ((2e^(1/x) )/(1+e^(1/x) ))  donc lim _(x→o^+ ) (2/((1+e^((−1)/x) )))=2

limx0+21+e1x21+e1x=21+1e1x=21+e1xe1x=2e1x1+e1xdonclimxo+2(1+e1x)=2

Answered by MrGaster last updated on 30/Oct/24

lim_(x→0^+ ) (2/(1+e^(−(1/x)) ))=(2/(1+e^(−∞) ))=(2/(1+0))=(2/1)=2

limx0+21+e1x=21+e=21+0=21=2

Answered by Frix last updated on 31/Oct/24

(2/(1+e^(−(1/x)) ))=1+tanh (1/(2x))  lim_(x→0^+ )   (2/(1+e^(−(1/x)) )) =lim_(x→0^+ )  (1+tanh (1/(2x))) =  =1+lim_(t→+∞)  tanh t =1+1=2

21+e1x=1+tanh12xlimx0+21+e1x=limx0+(1+tanh12x)==1+limt+tanht=1+1=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com