Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21314 by Tinkutara last updated on 20/Sep/17

Let α and β be the root of x^2  + px − (1/(2p^2 )) = 0,  p ∈ R. The minimum value of α^4  + β^4  is

$$\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{be}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{px}\:−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\:=\:\mathrm{0}, \\ $$$${p}\:\in\:{R}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\mathrm{is} \\ $$

Answered by $@ty@m last updated on 21/Sep/17

α+β=−p   &  αβ=− (1/(2p^2 ))   −−(1)  (a+b)^4 =a^4 +4a^3 b+6a^2 b^2 +4ab^3 +b^4   ⇒a^4 +b^4 =(a+b)^4 −4ab(a^2 +b^2 )−6(ab)^2   ⇒a^4 +b^4 =(a+b)^4 −4ab{(a+b)^2 −2ab}−6(ab)^2   ∴ α^4  + β^4  =(−p)^4 −4(− (1/(2p^2 ))){p^2 −2×((−1)/(2p^2 ))}−6(− (1/(2p^2 )))^2   =p^4 +(2/p^2 )(p^2 +(1/p^2 ))−6×(1/(4p^4 ))  =p^4 +2+(2/p^4 )−(3/(2p^4 ))  ∴ α^4  + β^4  =p^4 +2+(1/(2p^4 ))  −−(2)   Differentiating both sides wrt p  (d/dp)(α^4  + β^4  )=4p^3 −(2/p^5 )  −−(3)  For maxima or minima,  (d/dp)(α^4  + β^4  )=0  4p^3 −(2/p^5 )=0  4p^8 −2=0  p^8 =(1/2)  p^4 =(1/(√2))  −−(4)  Differentiating both sides of (3) wrt p  (d^2 /dp^2 )(α^4  + β^4  )=12p^2 +((10)/p^6 )  >0  ∴ α^4  + β^4  is minimum when p^4 =(1/(√2))  ⇒ (α^4  + β^4  )_(min.) =[p^4 +2+(1/(2p^4 ))]_(p^4 =(1/(√2)))   =(1/(√2))+2+(1/(2×(1/(√2))))  =(1/(√2))+2+(1/(√2))  =(√2)+2

$$\alpha+\beta=−{p}\:\:\:\&\:\:\alpha\beta=−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\:\:\:−−\left(\mathrm{1}\right) \\ $$$$\left({a}+{b}\right)^{\mathrm{4}} ={a}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{3}} {b}+\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{4}{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}+{b}\right)^{\mathrm{4}} −\mathrm{4}{ab}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\mathrm{6}\left({ab}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}+{b}\right)^{\mathrm{4}} −\mathrm{4}{ab}\left\{\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}\right\}−\mathrm{6}\left({ab}\right)^{\mathrm{2}} \\ $$$$\therefore\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:=\left(−{p}\right)^{\mathrm{4}} −\mathrm{4}\left(−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\right)\left\{{p}^{\mathrm{2}} −\mathrm{2}×\frac{−\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\right\}−\mathrm{6}\left(−\:\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$={p}^{\mathrm{4}} +\frac{\mathrm{2}}{{p}^{\mathrm{2}} }\left({p}^{\mathrm{2}} +\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right)−\mathrm{6}×\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{4}} } \\ $$$$={p}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{2}}{{p}^{\mathrm{4}} }−\frac{\mathrm{3}}{\mathrm{2}{p}^{\mathrm{4}} } \\ $$$$\therefore\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:={p}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{4}} }\:\:−−\left(\mathrm{2}\right)\: \\ $$$${Differentiating}\:{both}\:{sides}\:{wrt}\:{p} \\ $$$$\frac{{d}}{{dp}}\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)=\mathrm{4}{p}^{\mathrm{3}} −\frac{\mathrm{2}}{{p}^{\mathrm{5}} }\:\:−−\left(\mathrm{3}\right) \\ $$$${For}\:{maxima}\:{or}\:{minima}, \\ $$$$\frac{{d}}{{dp}}\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)=\mathrm{0} \\ $$$$\mathrm{4}{p}^{\mathrm{3}} −\frac{\mathrm{2}}{{p}^{\mathrm{5}} }=\mathrm{0} \\ $$$$\mathrm{4}{p}^{\mathrm{8}} −\mathrm{2}=\mathrm{0} \\ $$$${p}^{\mathrm{8}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${p}^{\mathrm{4}} =\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\:−−\left(\mathrm{4}\right) \\ $$$${Differentiating}\:{both}\:{sides}\:{of}\:\left(\mathrm{3}\right)\:{wrt}\:{p} \\ $$$$\frac{{d}^{\mathrm{2}} }{{dp}^{\mathrm{2}} }\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)=\mathrm{12}{p}^{\mathrm{2}} +\frac{\mathrm{10}}{{p}^{\mathrm{6}} }\:\:>\mathrm{0} \\ $$$$\therefore\:\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:{is}\:{minimum}\:{when}\:{p}^{\mathrm{4}} =\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\:\left(\alpha^{\mathrm{4}} \:+\:\beta^{\mathrm{4}} \:\right)_{{min}.} =\left[{p}^{\mathrm{4}} +\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}{p}^{\mathrm{4}} }\right]_{{p}^{\mathrm{4}} =\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}+\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}+\mathrm{2}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{2}}+\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Commented by Tinkutara last updated on 21/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com