Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213283 by issac last updated on 02/Nov/24

a_h  is Cauchy Sequence.  Sequence {a_h }_(h=1) ^n Satisfy Σ_(h=1) ^n  a_h =0 , Σ_(h=1) ^n  a_h ^2 =1  find minimum value of Summation   a_1 a_n +Σ_(h=1) ^(n−1)  a_h a_(h+1)   (korea university math contest problem)

ahisCauchySequence.Sequence{ah}h=1nSatisfynh=1ah=0,nh=1ah2=1findminimumvalueofSummationa1an+n1h=1ahah+1(koreauniversitymathcontestproblem)

Answered by MrGaster last updated on 02/Nov/24

Σ_(h=1) ^n a_h =0,Σ_(h=1) ^n a_h ^2 =1  Σ_(h=1) ^(n−1) a_h a_(h+1) +a_1 a_n =S  (Σ_(k=1) ^n a_h )^2 =(Σ_(h=1) ^n a_h )(Σ_(k=1) ^n a_k )=Σ_(h=1) ^n a_h a_k =0  Σ_(h=1) ^n a_h ^2 +2   Σ_(1≤h≤k≤n) a_h a_k =0  1+2   Σ_(1≤h<h≤n) a_h a_k =0  Σ_(1≤h<h≤n) a_h a_k =−(1/2)  S=Σ_(h=1) ^(n−1) a_h a_h +1+a_1 a_n =Σ_(1≤h<h≤n) a_h a_k +a_1 a_n −Σ_(1<h<k≤n_(k≠h+1) ) a_h a_k   S=−(1/2)+a_1 a_n −Σ_(1≤h<k≤n_(k≠h+1) ) a_h a_k −Σ_(h=1) ^(n−1) a_h a_(h+1) =−(1/2)−S  S=−(1/2)+a_1 a_n +(1/2)+S  0=a_1 a_n +S  S=−a_1 a_n   Using Cauchy-schwarz inequality:  (Σ_(h=1) ^n a_h b_h )^2 ≤(Σ_(h=1) ^n a_h ^2 )(Σ_(h=1) ^n b_h ^2 )  Set b_n =a_(h+1) ,b_n =a_1   (Σ_(k=1) ^n a_h a_h +1)^2 ≤(Σ_(h=1) ^n a_h ^2 )(Σ_(h=1) ^n a_(h+1) ^2 )(Σ_(h=1) ^n a_h a_(h+1) )^2 ≤1  −(√1)≤Σ_(k=1) ^n a_h a_(h+1) ≤(√1)  −1≤S≤1  Thus,the minimum value of S is determinant (((−1))).

nh=1ah=0,nh=1ah2=1n1h=1ahah+1+a1an=S(nk=1ah)2=(nh=1ah)(nk=1ak)=nh=1ahak=0nh=1ah2+21hknahak=01+21h<hnahak=01h<hnahak=12S=n1h=1ahah+1+a1an=1h<hnahak+a1an1<h<knkh+1ahakS=12+a1an1h<knkh+1ahakn1h=1ahah+1=12SS=12+a1an+12+S0=a1an+SS=a1anUsingCauchyschwarzinequality:(nh=1ahbh)2(nh=1ah2)(nh=1bh2)Setbn=ah+1,bn=a1(nk=1ahah+1)2(nh=1ah2)(nh=1ah+12)(nh=1ahah+1)211nk=1ahah+111S1Thus,theminimumvalueofSis1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com