All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 213298 by MathematicalUser2357 last updated on 02/Nov/24
Question29.Theres2same−ratiosequences{an},{bn}witharatioofnon−zeroAndiftwosumsofeachsequences(∑∞n=1an,∑∞n=1bn)areconvergent,andtwoequations∑∞n=1anbn=(∑∞n=1an)×(∑∞n=1bn)and3×∑∞n=1∣a2n∣=7×∑∞n=1∣a3n∣aretrue.If∑∞n=1b2n−1+b3n+1bn=S,thenFindthevalueof120S.(koreauniversityexamquestion)
Answered by MrGaster last updated on 02/Nov/24
∑∞n=1an=a11−ra,∑∞n=1bn=b11−rb∑∞n=1anbn=a1b11−rarba1b11−rarb=a11−ra⋅b11−rb3∑∞n=1∣a2n∣=7∑∞n=1∣a3n∣3∣a1∣ra1−ra2=7∣a1∣ra21−ra33(1−ra3)=7(1−ra2)3−3ra3−7ra2+4=0(ra−1)(3ra2−4ra−4)=0ra=1,ra=2,ra=−23ra=1doesnotsatisfythecondlitionforconvergence.since∣ra∣<1,havera=−23.∑∞n=1b2n−1+b3n+1bn=∑∞n=1(b1rb2n−2+b1rb3nb1rbn−1)=∑∞n=1(rb2n−2+b1rb3nrbn−1)=∑∞n=1(rbn−1+rb2n+1)=∑∞n=1rbn−1+∑∞n=1rb2n+1=11−rb+rb3(1−rb)(1+rb)=1+rb+rb31−rb2=1+rb+rb3(1−rb)(1+rb)=1+rb+rb31−rb2Giventhat120S=120(1+rb+rb31−rb2).lfrb=−23120S=120(1−23+(−23)31−(−23)2)=120(1−23−8271−49)=120(27−18−82759)=120(12758)=120(127⋅95)=120⋅115=8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com