Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 213298 by MathematicalUser2357 last updated on 02/Nov/24

Question 29. Theres 2 same-ratio sequences {a_n },{b_n } with a ratio of non-zero  And if two sums of each sequences (Σ_(n=1) ^∞ a_n ,Σ_(n=1) ^∞ b_n ) are convergent, and two equations  Σ_(n=1) ^∞ a_n b_n =(Σ_(n=1) ^∞ a_n )×(Σ_(n=1) ^∞ b_n ) and 3×Σ_(n=1) ^∞ ∣a_(2n) ∣=7×Σ_(n=1) ^∞ ∣a_(3n) ∣ are true.  If Σ_(n=1) ^∞ ((b_(2n−1) +b_(3n+1) )/b_n )=S, then Find the value of 120S.  (korea university exam question)

Question29.Theres2sameratiosequences{an},{bn}witharatioofnonzeroAndiftwosumsofeachsequences(n=1an,n=1bn)areconvergent,andtwoequationsn=1anbn=(n=1an)×(n=1bn)and3×n=1a2n∣=7×n=1a3naretrue.Ifn=1b2n1+b3n+1bn=S,thenFindthevalueof120S.(koreauniversityexamquestion)

Answered by MrGaster last updated on 02/Nov/24

Σ_(n=1) ^∞ a_n =(a_1 /(1−r_a )),Σ_(n=1) ^∞ b_n =(b_1 /(1−r_b ))  Σ_(n=1) ^∞ a_n b_n =((a_1 b_1 )/(1−r_a r_b ))  ((a_1 b_1 )/(1−r_a r_b ))=(a_1 /(1−r_a ))∙(b_1 /(1−r_b ))  3Σ_(n=1) ^∞ ∣a_(2n) ∣=7Σ_(n=1) ^∞ ∣a_(3n) ∣  3((∣a_1 ∣r_a )/(1−r_a ^2 ))=7((∣a_1 ∣r_a ^2 )/(1−r_a ^3 ))  3(1−r_a ^3 )=7(1−r_a ^2 )  3−3r_a ^3 −7r_a ^2 +4=0  (r_a −1)(3r_a ^2 −4r_a −4)=0  ra=1,r_a =2,r_a =−(2/3)  r_a =1 does not satisfy the condlition for  convergence.since∣r_a ∣<1, have  r_a =−(2/3).  Σ_(n=1) ^∞ ((b_(2n−1) +b_(3n+1) )/b_n )=Σ_(n=1) ^∞ (((b_1 r_b ^(2n−2) +b_1 r_b ^(3n) )/(b_1 r_b ^(n−1) )))  =Σ_(n=1) ^∞ (((r_b ^(2n−2) +b_1 r_b ^(3n) )/r_b ^(n−1) ))  =Σ_(n=1) ^∞ (r_b ^(n−1) +r_b ^(2n+1) )  =Σ_(n=1) ^∞ r_b ^(n−1) +Σ_(n=1) ^∞ r_b ^(2n+1)   =(1/(1−r_b ))+(r_b ^3 /((1−r_b )(1+r_b )))  =((1+r_b +r_b ^3 )/(1−r_b ^2 ))  =((1+r_b +r_b ^3 )/((1−r_b )(1+r_b )))  =((1+r_b +r_b ^3 )/(1−r_b ^2 ))  Given that 120S=120(((1+r_b +r_b ^3 )/(1−r_b ^2 ))).lf r_b =−(2/3)  120S=120(((1−(2/3)+(−(2/3))^3 )/(1−(−(2/3))^2 )))  =120(((1−(2/3)−(8/(27)))/(1−(4/9))))  =120(((27−18−8)/((27)/(5/9))))  =120((1/((27)/(5/8))))  =120((1/(27))∙(9/5))  =120∙(1/(15))              determinant (((=8)))

n=1an=a11ra,n=1bn=b11rbn=1anbn=a1b11rarba1b11rarb=a11rab11rb3n=1a2n∣=7n=1a3n3a1ra1ra2=7a1ra21ra33(1ra3)=7(1ra2)33ra37ra2+4=0(ra1)(3ra24ra4)=0ra=1,ra=2,ra=23ra=1doesnotsatisfythecondlitionforconvergence.sincera∣<1,havera=23.n=1b2n1+b3n+1bn=n=1(b1rb2n2+b1rb3nb1rbn1)=n=1(rb2n2+b1rb3nrbn1)=n=1(rbn1+rb2n+1)=n=1rbn1+n=1rb2n+1=11rb+rb3(1rb)(1+rb)=1+rb+rb31rb2=1+rb+rb3(1rb)(1+rb)=1+rb+rb31rb2Giventhat120S=120(1+rb+rb31rb2).lfrb=23120S=120(123+(23)31(23)2)=120(123827149)=120(271882759)=120(12758)=120(12795)=120115=8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com