All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 213376 by RoseAli last updated on 03/Nov/24
∫dx(4x2+1)3
Commented by Frix last updated on 03/Nov/24
Sometimesjustuseyourbrain&experienceddx[g(x)4x2+1]=g′(x)(4x2+1)−4g(x)(4x2+1)32g′(x)(4x2+1)−4g(x)=1⇒g(x)=x∫dx(4x2+1)3=x4x2+1+C
Answered by Frix last updated on 03/Nov/24
∫dx(4x2+1)32=[t=tan−12x]12∫costdt=12sint==x4x2+1+C
∫dx(4x2+1)32=[t=2x+4x2+1]∫2t(t2+1)2dt==−1t2+1=x4x2+1+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com