Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 213413 by hardmath last updated on 04/Nov/24

Find:  A= [(√1)] + [(√2)] + [(√3) ]+...+ [(√(323))] = ?

Find:A=[1]+[2]+[3]+...+[323]=?

Answered by mehdee7396 last updated on 04/Nov/24

=([(√1)]+[(√2)]+[(√3)]+)+([4]+[5]+...+[[(√8)])  +([(√9)]+[(√(10))]+...+[(√(24))])+...  +([(√(289))]+[(√(290))]+...+[(√(323))])  =3(1)+5(2)+7(3)+...+35(17)  =Σ_(n=1) ^(17) (2n+1)n=2Σ_(n=1) ^(17) n^2 +Σ_(n=1) ^(17) n  =2×((17×18×35)/6)+((17×18)/2)  =3723

=([1]+[2]+[3]+)+([4]+[5]+...+[[8])+([9]+[10]+...+[24])+...+([289]+[290]+...+[323])=3(1)+5(2)+7(3)+...+35(17)=17n=1(2n+1)n=217n=1n2+17n=1n=2×17×18×356+17×182=3723

Commented by hardmath last updated on 04/Nov/24

  dear friend, Is there an easier way to do this?  I didn't quite understand it

dear friend, Is there an easier way to do this? I didn't quite understand it

Commented by hardmath last updated on 05/Nov/24

2 ∙ ((17∙18∙35?)/6)   dear ser how?

2171835?6dearserhow?

Answered by Frix last updated on 05/Nov/24

⌊(√n)⌋=1, 1≤n≤3 ⇒ 3×1  ⌊(√n)⌋=2, 4≤n≤8 ⇒ 5×2  ⌊(√n)⌋=3, 9≤n≤15 ⇒ 7×3  ...  ⌊(√n)⌋=k, k^2 ≤n≤(k+1)^2 −1=k^2 +2k ⇒ (2k+1)×k  323=18^2 −1 ⇒ 1≤k≤17  Σ_(k=1) ^m (2k+1)k=2Σ_(k=1) ^m k^2 +Σ_(k=1) ^m k=  =((m(m+1)(2m+1))/3)+((m(m+1))/2)=  =((m(m+1)(4m+5))/6)  m=17 ⇒ Answer is ((17×18×73)/6)=3723

n=1,1n33×1n=2,4n85×2n=3,9n157×3...n=k,k2n(k+1)21=k2+2k(2k+1)×k323=18211k17mk=1(2k+1)k=2mk=1k2+mk=1k==m(m+1)(2m+1)3+m(m+1)2==m(m+1)(4m+5)6m=17Answeris17×18×736=3723

Commented by hardmath last updated on 05/Nov/24

thankyoudear professor

thankyoudearprofessor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com