Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21354 by Tinkutara last updated on 21/Sep/17

Solve : (√(2x + 5)) + (√(x − 1)) > 8

$$\mathrm{Solve}\::\:\sqrt{\mathrm{2}{x}\:+\:\mathrm{5}}\:+\:\sqrt{{x}\:−\:\mathrm{1}}\:>\:\mathrm{8} \\ $$

Commented byTinkutara last updated on 22/Sep/17

Where is my mistake?  (√(2x+5))+(√(x−1))>8  2x+5+x−1+2(√((2x+5)(x−1)))>64  2(√((2x+5)(x−1)))>60−3x  4(2x+5)(x−1)>9(x−20)^2   8x^2 +12x−20>9x^2 −360x+3600  x^2 −372x+3620<0  (x−362)(x−10)<0  x∈(10,362)  Why not I am getting x∈(10,∞)?

$${Where}\:{is}\:{my}\:{mistake}? \\ $$ $$\sqrt{\mathrm{2}{x}+\mathrm{5}}+\sqrt{{x}−\mathrm{1}}>\mathrm{8} \\ $$ $$\mathrm{2}{x}+\mathrm{5}+{x}−\mathrm{1}+\mathrm{2}\sqrt{\left(\mathrm{2}{x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)}>\mathrm{64} \\ $$ $$\mathrm{2}\sqrt{\left(\mathrm{2}{x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)}>\mathrm{60}−\mathrm{3}{x} \\ $$ $$\mathrm{4}\left(\mathrm{2}{x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)>\mathrm{9}\left({x}−\mathrm{20}\right)^{\mathrm{2}} \\ $$ $$\mathrm{8}{x}^{\mathrm{2}} +\mathrm{12}{x}−\mathrm{20}>\mathrm{9}{x}^{\mathrm{2}} −\mathrm{360}{x}+\mathrm{3600} \\ $$ $${x}^{\mathrm{2}} −\mathrm{372}{x}+\mathrm{3620}<\mathrm{0} \\ $$ $$\left({x}−\mathrm{362}\right)\left({x}−\mathrm{10}\right)<\mathrm{0} \\ $$ $${x}\in\left(\mathrm{10},\mathrm{362}\right) \\ $$ $${Why}\:{not}\:{I}\:{am}\:{getting}\:{x}\in\left(\mathrm{10},\infty\right)? \\ $$

Commented byalex041103 last updated on 22/Sep/17

Ok. First lets consider the folowing  Let  x<y  if we square both sides we get  x^2 <y^2 , but  x<y→−x>−y→(−x)^2 >(−y)^2   or x^2 >y^2 →contradiction.  Before we explore why this is a problem  let′s consider an easier case:  −x>2⇒x<−2(not >)  We know that we reverse the signs.  Squaring both sides of the inequality  is similar to multiplying both sides  by −1 (or taking the reciprical of both  sides).  So let′s consider the general case:  if g(x)≷h(x) then f(g(x)) ≷ or ≶ f(h(x)  for some function f(x)≠const.  Let s=sgn((d/dx)f(x))=const. for some  x∈I where [g(x),h(x)]∈I (suppose there  is such I), then    { ((f(g(x))≷f(h(x)), s=1)),((f(g(x))≶f(h(x)), s=−1)) :}  In conclusion we do reverse the inequality  g≷h if  (d/dx)f(x)<0 for x∈[g,h]  and we don′t if  (d/dx)f(x)>0 for x∈[g,h]  In our case of f(x)=x^2    sgn((d/dx)f(x))=sgn(x)  So in order to be even able to square  both sides the sign of both sides must  be the same.  In the case of  (√(2x+5))+(√(x−1))>8  for x∈[1,∞], sgn((√(2x+5))+(√(x−1)))=sgn(8)=1  ⇒ There is no problem in squaring   and we don′t reverse the inequality  But for 2(√((2x+5)(x−1)))>60−3x  sgn(LHS)=1 and sgn(60−3x)=1 or −1  When x∈(20,∞), sgn(60−3x)=−1  and then 0>60−3x and 2(√((2x+5)(x−1)))>0  ⇒x∈(20,∞) then 2(√((2x+5)(x−1)))>60−3x  When x∈(1, 20) (starting from one  in order for the square root to be real)  sgn(60−3x)=1  Then as in your solution  we see that for x∈(1,20),x∈(10,362)  or x∈[10,20](the ineq. is true for x=20,10)  ⇒Ans. x∈[10,∞)

$${Ok}.\:{First}\:{lets}\:{consider}\:{the}\:{folowing} \\ $$ $${Let} \\ $$ $${x}<{y} \\ $$ $${if}\:{we}\:{square}\:{both}\:{sides}\:{we}\:{get} \\ $$ $${x}^{\mathrm{2}} <{y}^{\mathrm{2}} ,\:{but} \\ $$ $${x}<{y}\rightarrow−{x}>−{y}\rightarrow\left(−{x}\right)^{\mathrm{2}} >\left(−{y}\right)^{\mathrm{2}} \\ $$ $${or}\:{x}^{\mathrm{2}} >{y}^{\mathrm{2}} \rightarrow{contradiction}. \\ $$ $${Before}\:{we}\:{explore}\:{why}\:{this}\:{is}\:{a}\:{problem} \\ $$ $${let}'{s}\:{consider}\:{an}\:{easier}\:{case}: \\ $$ $$−{x}>\mathrm{2}\Rightarrow{x}<−\mathrm{2}\left({not}\:>\right) \\ $$ $${We}\:{know}\:{that}\:{we}\:{reverse}\:{the}\:{signs}. \\ $$ $${Squaring}\:{both}\:{sides}\:{of}\:{the}\:{inequality} \\ $$ $${is}\:{similar}\:{to}\:{multiplying}\:{both}\:{sides} \\ $$ $${by}\:−\mathrm{1}\:\left({or}\:{taking}\:{the}\:{reciprical}\:{of}\:{both}\right. \\ $$ $$\left.{sides}\right). \\ $$ $${So}\:{let}'{s}\:{consider}\:{the}\:{general}\:{case}: \\ $$ $${if}\:{g}\left({x}\right)\gtrless{h}\left({x}\right)\:{then}\:{f}\left({g}\left({x}\right)\right)\:\gtrless\:{or}\:\lessgtr\:{f}\left({h}\left({x}\right)\right. \\ $$ $${for}\:{some}\:{function}\:{f}\left({x}\right)\neq{const}. \\ $$ $${Let}\:{s}={sgn}\left(\frac{{d}}{{dx}}{f}\left({x}\right)\right)={const}.\:{for}\:{some} \\ $$ $${x}\in{I}\:{where}\:\left[{g}\left({x}\right),{h}\left({x}\right)\right]\in{I}\:\left({suppose}\:{there}\right. \\ $$ $$\left.{is}\:{such}\:{I}\right),\:{then}\: \\ $$ $$\begin{cases}{{f}\left({g}\left({x}\right)\right)\gtrless{f}\left({h}\left({x}\right)\right),\:{s}=\mathrm{1}}\\{{f}\left({g}\left({x}\right)\right)\lessgtr{f}\left({h}\left({x}\right)\right),\:{s}=−\mathrm{1}}\end{cases} \\ $$ $${In}\:{conclusion}\:{we}\:{do}\:{reverse}\:{the}\:{inequality} \\ $$ $${g}\gtrless{h}\:{if}\:\:\frac{{d}}{{dx}}{f}\left({x}\right)<\mathrm{0}\:{for}\:{x}\in\left[{g},{h}\right] \\ $$ $${and}\:{we}\:{don}'{t}\:{if}\:\:\frac{{d}}{{dx}}{f}\left({x}\right)>\mathrm{0}\:{for}\:{x}\in\left[{g},{h}\right] \\ $$ $${In}\:{our}\:{case}\:{of}\:{f}\left({x}\right)={x}^{\mathrm{2}} \: \\ $$ $${sgn}\left(\frac{{d}}{{dx}}{f}\left({x}\right)\right)={sgn}\left({x}\right) \\ $$ $${So}\:{in}\:{order}\:{to}\:{be}\:{even}\:{able}\:{to}\:{square} \\ $$ $${both}\:{sides}\:{the}\:{sign}\:{of}\:{both}\:{sides}\:{must} \\ $$ $${be}\:{the}\:{same}. \\ $$ $${In}\:{the}\:{case}\:{of} \\ $$ $$\sqrt{\mathrm{2}{x}+\mathrm{5}}+\sqrt{{x}−\mathrm{1}}>\mathrm{8} \\ $$ $${for}\:{x}\in\left[\mathrm{1},\infty\right],\:{sgn}\left(\sqrt{\mathrm{2}{x}+\mathrm{5}}+\sqrt{{x}−\mathrm{1}}\right)={sgn}\left(\mathrm{8}\right)=\mathrm{1} \\ $$ $$\Rightarrow\:{There}\:{is}\:{no}\:{problem}\:{in}\:{squaring}\: \\ $$ $${and}\:{we}\:{don}'{t}\:{reverse}\:{the}\:{inequality} \\ $$ $${But}\:{for}\:\mathrm{2}\sqrt{\left(\mathrm{2}{x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)}>\mathrm{60}−\mathrm{3}{x} \\ $$ $${sgn}\left({LHS}\right)=\mathrm{1}\:{and}\:{sgn}\left(\mathrm{60}−\mathrm{3}{x}\right)=\mathrm{1}\:{or}\:−\mathrm{1} \\ $$ $${When}\:{x}\in\left(\mathrm{20},\infty\right),\:{sgn}\left(\mathrm{60}−\mathrm{3}{x}\right)=−\mathrm{1} \\ $$ $${and}\:{then}\:\mathrm{0}>\mathrm{60}−\mathrm{3}{x}\:{and}\:\mathrm{2}\sqrt{\left(\mathrm{2}{x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)}>\mathrm{0} \\ $$ $$\Rightarrow{x}\in\left(\mathrm{20},\infty\right)\:{then}\:\mathrm{2}\sqrt{\left(\mathrm{2}{x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)}>\mathrm{60}−\mathrm{3}{x} \\ $$ $${When}\:{x}\in\left(\mathrm{1},\:\mathrm{20}\right)\:\left({starting}\:{from}\:{one}\right. \\ $$ $$\left.{in}\:{order}\:{for}\:{the}\:{square}\:{root}\:{to}\:{be}\:{real}\right) \\ $$ $${sgn}\left(\mathrm{60}−\mathrm{3}{x}\right)=\mathrm{1} \\ $$ $${Then}\:{as}\:{in}\:{your}\:{solution} \\ $$ $${we}\:{see}\:{that}\:{for}\:{x}\in\left(\mathrm{1},\mathrm{20}\right),{x}\in\left(\mathrm{10},\mathrm{362}\right) \\ $$ $${or}\:{x}\in\left[\mathrm{10},\mathrm{20}\right]\left({the}\:{ineq}.\:{is}\:{true}\:{for}\:{x}=\mathrm{20},\mathrm{10}\right) \\ $$ $$\Rightarrow{Ans}.\:{x}\in\left[\mathrm{10},\infty\right) \\ $$

Commented byTinkutara last updated on 22/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented byalex041103 last updated on 22/Sep/17

Yes. Sorry about that.That′s becausd  (√(2x+5))+(√(x−1))=8 when x=10

$${Yes}.\:{Sorry}\:{about}\:{that}.{That}'{s}\:{becausd} \\ $$ $$\sqrt{\mathrm{2}{x}+\mathrm{5}}+\sqrt{{x}−\mathrm{1}}=\mathrm{8}\:{when}\:{x}=\mathrm{10} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com